
Constrained Nonnegative Matrix Factorization with Applications to

Music Transcription

University of Waterloo Technical Report CS-2014-27∗

Daniel Recoskie and Richard Mann

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
{dprecosk,mannr}@uwaterloo.ca

Abstract

We apply nonnegative matrix factorization to the task of music transcription. In music transcription
we are given an audio recording of a musical piece and attempt to find the underlying sheet music
which generated the music. We improve upon current transcription results by imposing novel temporal
and sparsity constraints which exploit the structure of music. We demonstrate the effectiveness or our
technique on the MAPS dataset.

1 Matrix Factorization

In this work we consider the problem of matrix factorization and its applications to music transcription.
Given a data matrix X with columns as data points, we wish to approximate X as the product of two
smaller matrices, B and G.

≈

X B G

data point basis vector basis activation

Furthermore, we restrict our matrices to be nonnegative. We make this restriction because many real
world data is composed of nonnegative parts. We also consider the role constraints play in the model.
More specifically, we add temporal and sparsity constraints in order to attain state of the art music
transcription results.

∗This work is a condensed version of the thesis presented in [16].

1

1.1 NMF in the literature

Nonnegative matrix factorization (NMF) has seen wide use in the literature. It was first used by Paatero
and Tapper, but under the name positive matrix factorization [15]. Lee and Seung popularized the
method as a tool for parts-based analysis [12, 13]. NMF has been used in a wide range of settings, from
financial modelling to bioinformatics [9, 18]. For a collection of reviews see [2, 5, 6, 22]. In our work we
concern ourselves with the task of music transcription.

Using NMF for music transcription was proposed by Smaragdis and Brown [17]. See Figure 1 for
and outline of the process. Since then, there have been many improvements to the method. Some
notable works include: a realtime sparse transcriber [8], a Bayesian approach [3], temporal and sparsity
constraints [20, 21], and harmonic analysis [19]. For an exhaustive review of several music transcription
methods, see [1].

short-time
Fourier transform

time (s)

fr
e
q

u
e

n
c
y
 (

H
z
)

0 1 2 3 4
0

200

400

600

800

1000

(a)

(b) (c)

Figure 1: The short-time Fourier transform of an audio signal is taken to obtain the matrix X in (a). NMF
produces (b) note matrix B and (c) transcription matrix G.

1.2 Outline

In this work we explore using NMF for music transcription. Section 2 briefly reviews time-frequency
analysis. Section 3 describes our proposed changes to the traditional NMF model. Section 4 includes the
results of our experiments. Finally, Section 5 contains our conclusion.

2 Time-frequency Analysis

In order to make use of NMF for music transcription we must transform our audio signals into a compati-
ble form. Figure 2a shows an example of an audio signal represented as a pressure-time wave. We cannot
discern much information from the audio when it is in this representation. However, if we consider the
frequency representation of the signal as in Figure 2b, we are able to pick out the typical signature of a
musical note.

2

(a)

(b)

Figure 2: (a) Example of an audio signal. (b) Magnitude of the Fourier transform of the audio signal in (a).

2.1 Fourier transform

We can make use of the Fourier transform in order to view audio signals in the frequency domain. The
Fourier transform of a continuous signal, s, is defined as

S(ξ) =

∫ ∞
−∞

s(t)e−2πitξdt (1)

The inverse transform is defined as

s(t) =

∫ ∞
−∞

S(ξ)e2πitξdξ (2)

For practical purposes, our signals will be discrete. Hence we need to modify the above transform to
work with discrete signals. The discrete Fourier transform of a discrete signal s0, s1, . . . , sN−1 is

Sk =

N−1∑
n=0

sne
−2πikn/N (3)

3

Similarly, the inverse discrete Fourier transform is

sn =
1

N

N−1∑
k=0

Ske
2πikn/N (4)

The Fourier transform is defined in terms of complex signals. For our purposes, we will only be
concerned with the magnitude of the Fourier transform as seen in Figure 2b. By only considering
the magnitude of the transform we lose the temporal information of the signal. We can remedy this
shortcoming by modifying the Fourier transform.

2.2 Short-time Fourier transform

We can avoid losing temporal information by taking many transforms over small, time localized windows
of the signal. This approach is called the short-time Fourier transform. The continuous version is defined
as

S(τ, ξ) =

∫ ∞
−∞

s(t)w(t− τ)e−2πitξdt (5)

where w is the window function. Here S is a function of frequency and time. Similarly, the discrete
short-time Fourier transform is defined as

Sk,ξ =

∞∑
n=−∞

snwn−ke
−2πiξn (6)

Consider the two signals in Figure 3. We see that we cannot distinguish between the two signals when
we look at the magnitude of their Fourier transforms. However, the short-time Fourier transform shows
clear differences.

3 Nonnegative Matrix Factorization

3.1 Background

In the formulation of NMF we are given a data matrix X ∈ Rd×n and are tasked with finding two
matrices B ∈ Rd×r and G ∈ Rr×n, such that BG approximates X. Here, n is the number of samples or
data points, d is the dimension of each sample, and r is the number of basis vectors used to approximate
the data. We evaluate the approximation using a cost function.

Lee and Seung [13] propose using divergence as a cost function1 to measure the closeness of BG to X

D(X||BG) =

d∑
i=1

n∑
j=1

(
Xij log

Xij
(BG)ij

−Xij + (BG)ij

)
(7)

where Mij refers to the element of M in the ith row and jth column. We are free to choose other cost
functions, but we focus on divergence in this work. Lee and Seung use the following iterative update
rules for finding B and G.

Bij = Bij

∑n
a=1GjaXia/(BG)ia∑n

b=1Gjb
(8)

and

Gij = Gij

∑d
a=1BaiXaj/(BG)aj∑d

b=1Bbi
(9)

Note that these rules are similar to gradient descent with the exception that there is no fixed step
size. Indeed, let us consider the additive gradient descent rule:

Gij = Gij + ηij

[
d∑
a=1

Bai
Xaj

(BG)aj
−

d∑
a=1

Bai

]
(10)

1Note that equation 7 reduces to the Kullback-Leibler divergence when
∑d
i=1

∑n
j=1 Xij =

∑d
i=1

∑n
j=1(BG)ij = 1. In this

work, we scale X so that its maximum element is one.

4

(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) A low frequency wave followed by a high frequency wave. (b) A signal opposite to (a).
(c,d) Magnitudes of the Fourier transform of (a,b) respectively. (e,f) Magnitudes of the short-time Fourier
transform of (a,b) respectively.

For small ηij this update rule will decrease D(X||BG). If we set

ηij =
Gij∑d
a=1Bai

and substitute it into equation 10 we obtain equation 9. We can obtain equation 8 similarly. What
remains is to show that equations 8 and 9 do not increase the cost functions. See [13] for a proof.

5

(a)

(b)

(c)

Figure 4: A row of G found by (a) standard NMF, (b) smoothed NMF, and (c) piecewise smooth NMF.

3.2 Constrained NMF

Let F (X,BG) = D(X||BG), and define

∇MF ,

∂F
∂M11

∂F
∂M12

· · · ∂F
∂M1j

∂F
∂M21

∂F
∂M22

· · · ∂F
∂M2j

...
...

. . .
...

∂F
∂Mi1

∂F
∂Mi2

· · · ∂F
∂Mij

 (11)

for some i × j matrix M . Let ∇+
MF (X,BG) and ∇−MF (X,BG) be the absolute values of the positive

and negative parts of ∇MF (X,BG) respectively. We can rewrite update rules as [21]

Bij = Bij
[∇−BF (X,BG)]ij

[∇+
BF (X,BG)]ij

(12)

and

Gij = Gij
[∇−GF (X,BG)]ij

[∇+
GF (X,BG)]ij

(13)

Update rules of this form are often seen empirically in be nonincreasing [3]. Writing the update rules in
this form allows us to easily add constraints to the cost function. We only consider constraints on G.
Since B will represent the basis vectors of our data, we do not want to restrict its form.

3.2.1 Temporal coherence

In this work we are considering audio signals. Hence we can attempt to exploit the temporal coherence
of the data. In the task of music transcription, the matrices B and G will represent the notes and
transcription respectively. In order to exploit temporal coherence in our data, we may be tempted to
smooth the rows of G by modifying the cost function to

D(X||BG) + λ

r∑
i=1

n∑
j=2

(Gij −Gij−1)2 (14)

where λ controls the weight of the constraint. This constraint attempts to smooth over the entire row.
This leads to a problem because in music there are often abrupt breakpoints (note onsets and offsets).
We can remedy this problem by allowing breakpoints in the rows of G.

Figure 4 shows the same row of G found by three different methods. Figure 4a is the results of
standard NMF. Figure 4b shows the result of smoothing the entire row. Note how the breakpoints are
removed. Finally, Figure 4c shows the result of our method that smooths the row but allows arbitrary
breakpoints. With this method we are able to exploit temporal coherence effectively.

We can impose piecewise smoothness by modifying our cost function to be

D(X||BG) + λ

r∑
i=1

n∑
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)

(15)

6

-4 -3 -2 -1 0 1 2 3 4

0.4

0.8

Figure 5: Plots of the function 1− e−x2/σ2

for varying σ values.

See Figure 5 for plots of the function 1− e−x
2/σ2

. The curve is similar to a quadratic for small values of
x, and constant for large values of x. Similar functions are used for outlier detection in robust statistics
[4].

Since the constraint only relies on G, the update rule for B remains unchanged. In order to modify
the update rule for G, we must find the gradient of the cost functions with respect to G.

∇GD(X||BG) = Bᵀ
(
1− X

BG

)
(16)

where 1 is the all ones matrix the same size as X.[
∇Gλ

r∑
i=1

n∑
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)]

ij

=

λ

σ2

(
e−(Gij−Gij−1)

2/2σ2

(Gij −Gij−1)− e−(Gij+1−Gij)
2/2σ2

(Gij+1 −Gij)
)

(17)

The update rule is then

Gij = Gij

[
Bᵀ X

BG

]
ij

+ λ
σ2

(
Gij−1 · e−(Gij−Gij−1)

2/2σ2

+Gij+1 · e−(Gij+1−Gij)
2/2σ2

)
[Bᵀ1]ij + λ

σ2Gij
(
e−(Gij−Gij−1)2/2σ2

+ e−(Gij+1−Gij)2/2σ2) (18)

Jio and Qian propose a similar rule in their work on hyper spectral unmixing [11]. A proof of convergence
can be found there.

We can further exploit temporal information by noting that breakpoints often coincide (i.e. several
notes in a musical piece are often played simultaneously). We can make use of this correlation by adding
a new constraint which favours aligned breakpoints. See Figure 6 for two rows of G before and after the
alignment constraint is added.

We align breakpoints by modifying our cost function to be

D(X||BG) + λ

n∑
j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)

(19)

Similar to the last constraint, a single breakpoint receives a fixed cost of λ. The main difference with
this new constraint is that multiple breakpoints that occur at the same time are assigned a total cost of
λ instead of a cost of λ per breakpoint. We again determine the gradient with respect to G.[

∇Gλ
n∑
j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)]

ij

=

λ

σ2

(
e−

∑r
i=1(Gij−Gij−1)

2/2σ2

(Gij −Gij−1)− e−
∑r

i=1(Gij+1−Gij)
2/2σ2

(Gij+1 −Gij)
)

(20)

The new update rule for G becomes

Gij = Gij

[
Bᵀ X

BG

]
ij

+ λ
σ2

(
Gij−1 · e−

∑r
i=1(Gij−Gij−1)

2/2σ2

+Gij+1 · e−
∑r

i=1(Gij+1−Gij)
2/2σ2

)
[Bᵀ1]ij + λ

σ2Gij
(
e−

∑r
i=1(Gij−Gij−1)2/2σ2

+ e−
∑r

i=1(Gij+1−Gij)2/2σ2
) (21)

7

(a)

(b)

Figure 6: Two rows of G found by imposing (a) piecewise smoothness and (b) piecewise smoothness with
aligned breakpoints.

3.2.2 Sparsity

We now consider element wise sparsity of our G matrix. We can impose this constraint with the following
cost term:

λ

d∑
i=1

n∑
j=1

(1− e−G
2
ij/2σ

2

) (22)

with the gradient with respect to G being[
∇Gλ

d∑
i=1

n∑
j=1

(1− e−G
2
ij/2σ

2

)

]
ij

=
λ

σ2
Gij e

−G2
ij/2σ

2

(23)

The update rule for G is:

Gij = Gij

[
Bᵀ X

BG

]
ij

[Bᵀ1]ij + λ
σ2Gij e

−G2
ij/2σ

2
(24)

4 Music transcription

In the problem of music transcription, we are given an audio recording of music and are tasked with
finding the underlying sheet music which generated the music. We now outline the process as seen
in Figure 1. First, we take the magnitude of the short time Fourier transform of our audio file. This
transform, also called a spectrogram, is our data matrix X. In our experiments we used 100ms triangular
windows overlapping by 50%. After finding the spectrogram, we compute B and G using the NMF update
rules from the previous section. We used the following for estimating the σ value for each constraint.

• piecewise smooth: λ
∑r
i=1

∑n
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)

σ̂ = std({Gij −Gij−1 | 1 ≤ i ≤ d, 1 ≤ j ≤ n}) (25)

• aligned breakpoints: λ
∑n
j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)

σ̂ = std

({
n∑
j=2

(Gij −Gij−1) | 1 ≤ i ≤ d

})
(26)

• element-wise sparsity: λ
∑d
i=1

∑n
j=1(1− e−G

2
i,j/2σ

2

)

σ̂ = std({Gij | 1 ≤ i ≤ d, 1 ≤ j ≤ n}) (27)

8

Algorithm 1 Constrained NMF algorithm

for scaling factor ← 10.. 110 do
for i← 1..num constraints do

σi ← scaling factor · estimate(σi)
end for
while change in F (B,G) > ε do

Bij ← Bij
[∇−F (X,BG)]ij
[∇+F (X,BG)]ij

B ← scale(B)

Gij ← Gij
[∇−F (X,BG)]ij
[∇+F (X,BG)]ij

end while
end for

where std(S) is the standard deviation of the elements of the set S.
Ideally, the columns of B will correspond exactly to the notes contained in our musical piece, and G

will be our transcription. The final step is assigning specific notes to each columns of B. We can do so
by looking at the lowest frequency peak of each column. Note that in addition to the notes, one column
of B generally corresponds to a noise vector. This can be ignored in the final transcription.

See Algorithm 1 for an outline of the constrained NMF algorithm. The B andGmatrices are randomly
initialized prior to running the algorithm. We make use of a scaling factor that ranges from 10 to 1

10
.

This is done so that our constraint curves start out wide and become narrower at each iteration. See [16]
for more detail. The columns of the B matrix are scaled at each iteration so that they each sum to one.
After we have found G, we threshold its values to obtain our final transcription as follows,

Gij =

{
1 if Gij ≥ σ
0 if Gij < σ

where σ is the standard deviation of the elements of G.
For a given instrument there is generally a fixed set of possible notes that can be produced. As such,

it is often more efficient to compute our B matrix once prior to transcription. Once we have learned B
we hold it fixed and only update G in our NMF algorithm. We used this approach in our experiments.

We evaluate our transcription results using precision, recall, F-score, and mean overlap ratio (MOR).
The first three measure the accuracy of our transcribed note onsets and are described below,

precision =
tp

tp + fp
, recall =

tp

tp + fn
, F-score = 2

precision · recall

precision + recall

where tp and fp are the number of true and false positives respectively, and fn is the number of false
negatives. A note onset is considered correct if it occurs within 50ms of the ground truth.

MOR measures note duration accuracy. Let ong and ont be the ground truth onset time and tran-
scribed onset time respectively. Define off g and off t for offset times similarly. The overlap ratio is
then

min{off g, off t} −max{ong, ont}
max{off g, off t} −min{ong, ont}

MOR is the average overlap ratio taken over all correctly transcribed notes.

4.1 MAPS

Our experiments make use of the MAPS (MIDI Aligned Piano Sounds) dataset [10]. We compare our
results to those found by Bertin et al. [3]. The MAPS dataset contains synthetic and real piano music.
The synthetic music is generated from software, whereas the real piano music was recorded on a player
piano. We transcribe a total of 30 pieces each of synthetic and real songs (truncated to 30s).

Tables 1 and 2 list the results reported by Bertin et al. (first six rows) and our results (last row). Note
that in contrast to our method, the methods used by Bertin et al. do not learn B prior to transcription.

We report the values of λ which gave the best results in Tables 3, 4, and 5. The λ values corresponding
to the piecewise smooth, piecewise smooth with aligned breakpoints, and sparsity constraints are denoted
by λsm1, λsm2, and λsp respectively.

9

Algorithm F-score Precision Recall MOR
NMF/MU 0.549 0.634 0.561 0.512
Vincent’08 0.584 0.607 0.600 0.548

H-NMF/MU 0.524 0.587 0.591 0.460
S-NMF 0.495 0.624 0.433 0.507

Virtanen’07 0.536 0.559 0.564 0.521
HS-NMF 0.607 0.658 0.645 0.443

Constrained NMF 0.706 (±0.055) 0.727 (±0.051) 0.701 (±0.066) 0.529 (±0.035)

Table 1: The results of Bertin et al. and constrained NMF for synthetic music samples. The top two results
in each column are in bold.

Algorithm F-score Precision Recall MOR
NMF/MU 0.408 0.433 0.434 0.477
Vincent’08 0.361 0.387 0.374 0.500

H-NMF/MU 0.413 0.430 0.427 0.446
S-NMF 0.366 0.462 0.320 0.456

Virtanen’07 0.336 0.342 0.348 0.471
HS-NMF 0.450 0.466 0.453 0.432

Constrained NMF 0.539 (±0.063) 0.563 (±0.068) 0.544 (±0.071) 0.565 (±0.040)

Table 2: The results of Bertin et al. and constrained NMF for real (ambient) music samples. The top two
results in each column are in bold.

λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.379 (±0.033) 0.257 (±0.027) 0.751 (±0.055) 0.574 (±0.033)
0.0 0.0 1.8 0.704 (±0.049) 0.665 (±0.046) 0.759 (±0.063) 0.521 (±0.035)
0.0 1.5 0.0 0.431 (±0.046) 0.376 (±0.037) 0.540 (±0.079) 0.541 (±0.051)
0.0 0.5 1.5 0.706 (±0.055) 0.727 (±0.051) 0.701 (±0.066) 0.529 (±0.035)
0.5 0.0 0.0 0.587 (±0.056) 0.608 (±0.045) 0.586 (±0.072) 0.549 (±0.049)
0.1 0.0 0.9 0.696 (±0.069) 0.730 (±0.072) 0.692 (±0.069) 0.544 (±0.042)

Table 3: Constrained NMF results for synthetic data with 95% confidence intervals.

λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.251 (±0.030) 0.158 (±0.021) 0.644 (±0.066) 0.565 (±0.035)
0.0 0.0 2.4 0.502 (±0.055) 0.480 (±0.058) 0.542 (±0.058) 0.495 (±0.040)
0.0 1.0 0.0 0.367 (±0.040) 0.302 (±0.031) 0.511 (±0.078) 0.536 (±0.049)
0.0 0.5 1.5 0.493 (±0.060) 0.509 (±0.063) 0.503 (±0.067) 0.546 (±0.030)
0.5 0.0 0.0 0.456 (±0.052) 0.446 (±0.047) 0.509 (±0.078) 0.523 (±0.055)
0.1 0.0 0.9 0.539 (±0.063) 0.563 (±0.068) 0.544 (±0.071) 0.565 (±0.040)

Table 4: Constrained NMF results for real (ambient) data with 95% confidence intervals.

5 Conclusion

In this work we explored the effects of constraints on the NMF model. Specifically, we consider the task
of music transcription and compare our results to the current state of the art. NMF is a suitable method
for music transcription due to the additive nature of music. That is, music is composed of a sum of
overlapping notes. NMF is able to exploit this additivity in order to give good transcription results. We
show that by adding temporal and sparsity constraints we can improve the transcription performance
over the state of the art.

There are several avenues of future research to consider. In this work we only use the divergence
cost function. One may consider using other cost functions (e.g. squared Frodenius norm). Alternative

10

λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.314 (±0.026) 0.198 (±0.019) 0.789 (±0.046) 0.631 (±0.026)
0.0 0.0 1.8 0.661 (±0.049) 0.597 (±0.058) 0.762 (±0.045) 0.558 (±0.031)
0.0 1.0 0.0 0.442 (±0.026) 0.341 (±0.021) 0.657 (±0.058) 0.628 (±0.031)
0.0 0.5 1.5 0.698 (±0.043) 0.685 (±0.046) 0.724 (±0.052) 0.584 (±0.031)
0.5 0.0 0.0 0.618 (±0.041) 0.591 (±0.037) 0.667 (±0.058) 0.641 (±0.036)
0.1 0.0 0.6 0.715 (±0.041) 0.699 (±0.045) 0.747 (±0.052) 0.637 (±0.025)

Table 5: Constrained NMF results for real (close) data with 95% confidence intervals.

optimization methods could also be explored such as regularized alternating least squares [7] or projected
gradient descent [14]. Finally, it could be beneficial to add higher level concepts to the model. For
example, we may wish to include tempo, time signature, and key.

References

[1] Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi Klapuri.
Automatic music transcription: challenges and future directions. Journal of Intelligent Information
Systems, 41(3):407–434, 2013.

[2] Michael W. Berry, Murray Browne, Amy N. Langville, V. Paul Pauca, and Robert J. Plemmons.
Algorithms and applications for approximate nonnegative matrix factorization. In Computational
Statistics and Data Analysis, pages 155–173, 2006.

[3] N. Bertin, R. Badeau, and E. Vincent. Enforcing harmonicity and smoothness in bayesian non-
negative matrix factorization applied to polyphonic music transcription. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, 18(3):538–549, March 2010.

[4] G. E. P. Box and S. L. Andersen. Permutation theory in the derivation of robust criteria and the
study of departures from assumption. Journal of the Royal Statistical Society. Series B (Method-
ological), 17(1):pp. 1–34, 1955.

[5] Ioan Buciu. Non-negative matrix factorization, a new tool for feature extraction: Theory and
applications. Int. J. Computers, Communications and Control, 3:67–74, 2006.

[6] Moody Chu and Robert Plemmons. Nonnegative matrix factorization and applications. Bulletin of
the International Linear Algebra Society, 34:2–7, 2005.

[7] Andrzej Cichocki and Rafal Zdunek. Regularized alternating least squares algorithms for non-
negative matrix/tensor factorization. In Derong Liu, Shumin Fei, Zengguang Hou, Huaguang Zhang,
and Changyin Sun, editors, Advances in Neural Networks ISNN 2007, volume 4493 of Lecture Notes
in Computer Science, pages 793–802. Springer Berlin Heidelberg, 2007.

[8] Arshia Cont. Realtime multiple pitch observation using sparse non-negative constraints. In Inter-
national Conference on Music Information Retrieval, 2006.

[9] Konstantinos Drakakis, Scott Rickard, Ruair De Frin, and Andrzej Cichocki. Analysis of financial
data using non-negative matrix factorization. Int. Mathematical Forum, 3(38):1853–1870, 2008.

[10] V. Emiya, R. Badeau, and B. David. Multipitch estimation of piano sounds using a new probabilistic
spectral smoothness principle. Trans. Audio, Speech and Lang. Proc., 18(6):1643–1654, August 2010.

[11] Sen Jia and Yuntao Qian. Constrained nonnegative matrix factorization for hyperspectral unmixing.
Geoscience and Remote Sensing, IEEE Transactions on, 47(1):161–173, Jan 2009.

[12] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999.

[13] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In NIPS,
pages 556–562. MIT Press, 2000.

[14] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization. Neural Comput.,
19(10):2756–2779, October 2007.

[15] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994.

11

[16] Daniel Recoskie. Constrained nonnegative matrix factorization with applications to music transcrip-
tion. Master’s thesis, University of Waterloo, http://hdl.handle.net/10012/8639, 2014.

[17] P. Smaragdis and J.C. Brown. Non-negative matrix factorization for polyphonic music transcription.
In Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., pages 177–
180, Oct 2003.

[18] Suvrit Sra and Inderjit S. Dhillon. Nonnegative matrix approximation: Algorithms and applications.
Technical Report TR-06-27, Department of Computer Science, the University of Texas at Austin,
June 2006.

[19] E. Vincent, N. Bertin, and R. Badeau. Adaptive harmonic spectral decomposition for multiple pitch
estimation. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3):528–537, March
2010.

[20] T. Virtanen. Sound source separation using sparse coding with temporal continuity objective. In
Proc. Int. Comput. Music Conf, pages 231–234, 2003.

[21] T. Virtanen. Monaural sound source separation by nonnegative matrix factorization with temporal
continuity and sparseness criteria. Audio, Speech, and Language Processing, IEEE Transactions on,
15(3):1066–1074, March 2007.

[22] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factorization: A comprehensive review.
Knowledge and Data Engineering, IEEE Transactions on, 25(6):1336–1353, June 2013.

12

