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Certified compilers are complex software systems. Like other large systems, they demand modular, extensible
designs. While there has been progress in extensible metatheory mechanization, scaling extensibility and
reuse to meet the demands of full compiler verification remains a major challenge.

We respond to this challenge by introducing novel expressive power to a proof language. Our language
design equips the Rocq prover with an extensibility mechanism inspired by the object-oriented ideas of
late binding, mixin composition, and family polymorphism. We implement our design as a plugin for Rocq,
called Rocqet. We identify strategies for using Rocqet’s new expressive power to modularize the monolithic
design of large certified developments as complex as the CompCert compiler. The payoff is a high degree of
modularity and reuse in the formalization of intermediate languages, ISAs, compiler transformations, and
compiler extensions, with the ability to compose these reusable components—certified compilers à la carte.
We report significantly improved proof-compilation performance compared to earlier work on extensible
metatheory mechanization. We also report good performance of the extracted compiler.
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1 Introduction
Compiler bugs threaten software security and reliability; they invalidate application-level guar-
antees and complicate the diagnosis of application bugs. Certified compilers, like CompCert [36]
and CakeML [58], eliminate entire classes of compiler vulnerabilities, securing a critical part of the
software stack with mathematically rigorous proofs.

Compilers are complex systems, however. Their construction calls for modular, extensible ap-
proaches that promote code reuse and compositional rather than monolithic designs [47, 44, 53, 30,
9, 48, 34]. The need for extensibility and composability is even more pressing in the case of certified
compilers, where the cost of developing, maintaining, and extending mechanized proofs can be
prohibitively high. Two open challenges have been identified.

Modularization of compiler extensions. This challenge echoes the expression problem [61],
but in the novel setting of certified programming using proof assistants. The goal is ambitious: to
support new language features by modularly extending verified compilers, to easily assemble new
verified compilers by mixing and matching these verified extensions, and to do all this without
rechecking the proofs of already verified components. The importance of this challenge is well
recognized; for example, it was highlighted in a keynote at last year’s PLDI [41].

Modularization of code representations and compiler transformations. This challenge con-
cerns the intermediate representations (IRs) within a certified compiler. Both CompCert and
CakeML are multi-pass compilers involving a series of IRs. Some IRs and passes are slight varia-
tions of one another, yet they are defined and verified with nearly identical, often copy-pasted
text. This lack of modularity has been noted [12, 33]. It creates tedium, obstructs changes, blurs
the distinct purposes of individual IRs and passes—yet it remains largely unresolved.
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These challenges persist, largely because the compiler-and-proof engineer lacks effective means
to organize programs in an extensible, composable way that scales to large certified components.
– Extensibility refers to minimizing hard links and maximizing extensibility hooks, so that certified

components can be used in new contexts other than the original one in which they are defined.
– Composability is the ability to reuse certified components, in a mix-and-match style, without

having to modify the components or recheck their proofs.
– Scalability means that extensibility hooks can describe both small components—like individual

inductive types and induction proofs—and large components—like an entire family of related
components—so that extension and composition are possible at both small and large scales,
without causing a clutter of explicit parameters.
Prior efforts have been made [11, 12, 54, 31, 20, 27] to provide design patterns or language-level

support for modularizing the development of mechanized proofs. Notably, our recent work [27]
introduces an extensibility mechanism to the Rocq prover [51] (then called Coq), inspired by the
object-oriented ideas of late binding and family polymorphism [18]. The resulting language design
and implementation, called FPOP [27], comes close to meeting the needs of modular mechanized
metatheories.

Despite all this exciting progress, the prior work is only intended to address mechanized proofs
at a relatively small scale: metatheories of simply typed lambda calculi. We contend that it falls
short of meeting the full demands of modularizing realistic certified optimizing compilers at the
scale of CompCert.

Contributions. We identify a key generalization of FPOP that enables it to scale to large, complex
compiler projects. FPOP allows the late binding of individual inductive types, as well as individual
recursive definitions over inductive types, by making them polymorphic to the family they are
nested within. Critically, FPOP does not support the late binding of larger components—in particular,
families nested within a family are not polymorphic to their enclosing family and, hence, are
not extensibility hooks in FPOP. This limitation constrains the scale at which verified compiler
components can be defined and reused.

Hence, a first contribution of this paper is a language design generalizing FPOP to support nested
family polymorphism. It allows families nested within a family to be used as extensibility hooks,
which can be refined in accordance with other components of the enclosing family. Our language
design also supports traits, which are mixins that introduce new functionalities or variations to
a family. The late binding of nested families and nested traits is key to scaling extensibility and
composability to mechanized proof developments at a much larger scale than previously attainable.

As a second contribution, we present Rocqet,1 an implementation of the language design
as a Rocq plugin. Like FPOP, Rocqet is implemented via a compilation to Rocq modules. Unlike
FPOP, the compilation artifact of a nested family or a trait is not a “fixed point”, which is closed to
extension, but rather a functor parameterized by each of its enclosing family and thus can be reused
in new contexts. In addition to supporting greater expressiveness than FPOP, Rocqet is also more
efficient. For a major case study previously done with FPOP, Rocqet reduces proof-compilation time
by a factor of more than 80.

A third contribution is an extensible certified C compiler framework constructed using
Rocqet. Conceptually, this compiler uses the same IRs and passes as CompCert. But unlike CompCert,
the compiler is structured by prioritizing extensibility and reuse.
• We verify a compiler for a base language, extend it with additional features of CompCert C, and
compose these extensions to create custom compilers.

1The et in Rocqet is French for &, suggesting à la carte composition of families and traits—also a nod to the J& language [45].



3

• We use Rocqet to modularize the modeling of the RISC-V ISA, enabling different compiler exten-
sions to customize the combination of RISC-V extensions they target.

• We use Rocqet to refactor CompCert, which currently consists of a few monolithic IRs and passes
containing duplication, into finer-grained compiler transformations with sharing.

The payoff is cleaner, more modular mechanized proofs reused across IRs, passes, and compiler
extensions, with good performance of the extracted compilers. Buckle up for a Rocqet ride!

2 A First Look at Rocqet in Action
This section previews how the language-design ideas in Rocqet come together to address program-
ming challenges in the construction of extensible certified compilers. Throughout Sections 2–4, we
use as a running example of a certified C compiler framework, zooming in on one compiler stage,
front-end desugaring transformations on the input program, and one compiler extension, loops.2

The front end of the compiler performs a series of desugaring transformations to reduce the
syntactic complexity of the input program—removing one-armed if statements, removing increment
and decrement operators, etc. The target language of desugaring is called CoreC.

C CoreC Clight ···
desugaring transformations

Rather than a single monolithic pass for all desugaring, a more modular approach follows the
nanopass principle [53, 30]: structuring them as a collection of many small passes, each performing
a single task. These smaller passes are easier to read, define, and verify. However, this approach can
lead to excessive boilerplate code repeated across nanopasses. In fact, this repetition already occurs
in some passes in CompCert and CakeML, as previously noted [12, 33], even though those passes
are not small enough to qualify as nanopasses.

Figures 1 and 2 show how this programming challenge can be addressed with Rocqet.

Reuse across code representations. As Figure 1 shows, The source language C is modeled as a
Family composed of a shared component CoreC and several extensions CoreC_If1, CoreC_Incr, etc.
CoreC is called the base family, CoreC_If1 and CoreC_Incr are mixins, and C is the derived family.

The definition of the syntax and semantics is modular: each extension, defined in its own Trait,
adds new constructors to the inductive types (FInductive) to model the new syntax and semantics
introduced by the extension. Accordingly, metatheories proven by induction over these inductive
types (FInduction) are also extended with new cases in their proofs.

For example, CoreC_If1 models one-armed if statements: it adds a constructor Sif1 to the stmt

inductive type, and it adds constructors to cont, sstep, and wt_stmt to model the dynamic and static
semantics of one-armed if. Now, consider sstep_pres in the base family CoreC. Its on clause indicates
that the proof is by induction over sstep. Its motive clause indicates that it proves type preser-
vation for statement reduction: ∀ S t S', sstep S t S' → wt_state S → wt_state S'. Therefore,
in accordance with the extension of sstep by CoreC_If1, the proof of sstep_pres is extended in
CoreC_If1 to handle—and only handle—the new sstep cases introduced by CoreC_If1. Traits like
CoreC_If1 make targeted refinements to their base family; they need not repeat contents of the
base family.

Traits can be composed to create families. While Figure 1 shows only two traits, other extensions
of CoreC can be similarly defined. When all the traits CoreC_If1, CoreC_Incr, etc. are composed
with CoreC to derive the family C, a complete mechanization of the source language is obtained.
In particular, C.sstep_pres and C.estep_pres are automatically proven metatheoretical results.
For instance, running the Rocq command Print C.sstep_pres will display the proof term and its

2This example is based on CompCert. Desugaring transformations are not part of CompCert, though. We use them here for
their simplicity. The idea can be applied to compiler passes in CompCert as well.
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CoreC
expr stmt env cont
state estep sstep

CoreC_If1

CoreC_Incr

C

wt_expr wt_stmt
wt_state estep_pres

···sstep_pres

expr stmt env cont
state estep sstep
wt_expr wt_stmt

wt_state estep_pres
···sstep_pres

expr stmt env cont
state estep sstep
wt_expr wt_stmt

wt_state estep_pres
···sstep_pres

expr stmt env cont
state estep sstep
wt_expr wt_stmt

wt_state estep_pres
···sstep_pres

Dashed boxes represent traits (i.e., mixins).
Extensibility hooks that need no refinement are grayed out.

Family CoreC. Comp/CoreC.v

(* syntax *)

FInductive expr : Type ^:= (* expression *)

| Evar : id → expr

| … (* other expr constructors *) ….

FInductive stmt : Type ^:= (* statement *)
| Sskip : stmt

| Sseq : stmt → stmt → stmt

| Sdo : expr → stmt

| Sif : expr → stmt → stmt → stmt

| … (* other stmt constructors *) ….

FDefinition env : Type ^:= (* variable environment *)
PTree.t (block * type).

FInduction cont : Type ^:= …. (* evaluation context *)
FInductive state : Type ^:= …. (* state of execution *)

(* small-step semantics of expressions and statements *)
FInductive estep : state → trace → state → Prop ^:= ….

FInductive sstep : state → trace → state → Prop ^:= ….

(* well-typedness *)
FInductive wt_expr : tyenv → expr → Prop ^:= ….

FInductive wt_stmt : tyenv → stmt → type → Prop ^:= ….

FInductive wt_state : tyenv → state → Prop ^:= ….

(* type-preservation results of the small-step semantics *)
FInduction estep_pres on estep motive

𝜆 S t S', (_ : estep S t S'), wt_state S → wt_state S'.

… (* handle all estep cases *) …
End estep_pres.

FInduction sstep_pres on sstep motive

𝜆 S t S', (_ : sstep S t S'), wt_state S → wt_state S'.

… (* handle all sstep cases *) …
End sstep_pres.

…
End CoreC.

Trait CoreC_If1 extends CoreC. Comp/CoreC_If1.v

FInductive stmt : Type +=
| Sif1 : expr → stmt → stmt. (* one-armed if *)

FInductive cont : Type += ….

FInductive sstep : state → trace → state → Prop += ….

FInductive wt_stmt : tyenv → stmt → type → Prop += ….

FInduction sstep_pres.

… (* handle only new sstep cases *) …
End sstep_pres.

End CoreC_If1.

Trait CoreC_Incr extends CoreC. Comp/CoreC_Incr.v

FInductive expr : Type +=
| Eincr : incr_or_decr → id → expr. (* incr/decr ops *)
FInductive estep : state → trace → state → Prop += ….

FInductive wt_expr : tyenv → expr → Prop += ….

FInduction estep_pres.

… (* handle only new estep cases *) …
End estep_pres.

End CoreC_Incr.

Family C extends CoreC Comp/C.v

using CoreC_If1, CoreC_Incr, ….

End C. (* mix all CoreC extensions into CoreC *)

Figure 1. The source language C and its metatheories are mechanized by composing a shared component
CoreC with extensions of CoreC (such as CoreC_If1 and CoreC_Incr).

type: ∀ S t S', C.sstep S t S' → C.wt_state S → C.wt_state S'. The proof term is synthesized
by Rocqet from the proof cases in CoreC and those in the traits.

We will use CoreC as the target language for mechanizing the desugaring transformations and use
the extensions as the source languages. The extensibility afforded by family polymorphism allows
us to easily mechanize multiple distinct IRs that precisely capture the differences between the
input and output of each desugaring transformation. The alternative would be either to use a single
language as both the source and target or to duplicate the base-family logic in all extensions. The
former would litter the code with extra proofs arguing that the output is indeed in the desugared
form, while the latter would be brittle and hard to maintain. Neither approach is modular.

We note that our use of Rocqet up to this point does not exercise expressive power beyond
FPOP [27]—we have only mechanized subject-reduction proofs thus far—although it is already
putting pressure on the resources FPOP needs to compile the proofs.

Reuse across compiler transformations. As Figure 2 shows, the desugaring transformations and
their correctness proofs are given by family CoreCgen. This family is obtained by composing a base
family Desugar_common and several extensions Desugar_If1, Desugar_Incr, etc., each responsible for
a nanopass. The shared Desugar_common is mostly mechanical, performing identity transformations
and proving their correctness.

What is interesting here is that the source language of the translation is defined as a family S that
is nested within Desugar_common. Unlike in FPOP, nested families and nested traits are extensibility
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CoreC CoreC
transl_expr
transl_stmt

Desugar_common

S T
transl_expr_correct
transl_stmt_correct

CoreC_If1 CoreC
Desugar_If1

S T
transl_expr_correct
transl_stmt_correct

transl_expr
transl_stmt

CoreC_Incr CoreC
Desugar_Incr

S T
transl_expr_correct
transl_stmt_correct

transl_expr
transl_stmt

C CoreC
transl_expr
transl_stmt

CoreCgen

S T
transl_expr_correct
transl_stmt_correct

Dashed boxes represent traits (i.e., mixins).
Extensibility hooks that need no refinement are grayed out.

Family Desugar_common. Comp/Desugar_common.v

(* two nested families, serving as extensibility hooks *)
Family S extends CoreC. End S. (* source language *)
Family T extends CoreC. End T. (* target language *)
(* define the trivial translation from S to T *)

FRecursion transl_expr on S.expr motive 𝜆_, res T.expr.

Case S.Evar x ^:= ret (T.Evar x).

… (* handle other expr cases *) …
End transl_expr.

FRecursion transl_stmt on S.stmt motive 𝜆_, res T.stmt.

Case S.Sskip ^:= ret T.Sskip.

Case S.Sseq s1 s2 ^:= do s1' ← transl_stmt s1;

do s2' ← transl_stmt s2; ret (T.Sseq s1' s2').

Case S.Sdo e s ^:= …. Case S.Sif e s1 s2 ^:= ….

… (* handle other stmt cases *) …
End transl_stmt.

(* prove the translation from S to T correct *)
FInduction transl_expr_correct on CoreC.estep

motive 𝜆 S1 t S2 (_ : CoreC.estep S1 t S2),

transl_expr_meets_spec S1 t S2.

… (* handle all estep cases *) …
End transl_expr_correct.

FInduction transl_stmt_correct on CoreC.sstep

motive 𝜆 S1 t S2 (_ : CoreC.sstep S1 t S2),

transl_stmt_meets_spec S1 t S2.

… (* handle all sstep cases *) …
End transl_stmt_correct.

End Desugar_common.

Trait Desugar_If1 Comp/Desugar_If1.v

extends Desugar_common.

Trait S extends CoreC using CoreC_If1. End S.

FRecursion transl_stmt on S.stmt motive 𝜆_, res T.stmt.

Case S.Sif1 e s ^:= (* desugar one-armed if *)

do e' ← transl_expr e;

do s' ← transl_stmt s;

ret (T.Sif e' s' T.Sskip).

End transl_stmt.

FInduction transl_stmt_correct.

… (* handle only new sstep cases *) …
End transl_stmt_correct.

End Desugar_If1.

Trait Desugar_Incr Comp/Desugar_Incr.v

extends Desugar_common.

Trait S extends CoreC using CoreC_Incr. End S.

FRecursion transl_expr on S.expr motive 𝜆_, res T.expr.

Case S.Eincr op x ^:= …. (* desugar incr/decr *)
End transl_expr.

FInduction transl_expr_correct.

… (* handle only new estep cases *) …
End transl_expr_correct.

End Desugar_Incr.

Family CoreCgen Comp/CoreCgen.v

extends Desugar_common

using Desugar_If1, Desugar_Incr, ….

Family S ^:= C.

Family T ^:= CoreC.

End CoreCgen.

Figure 2. The translation from C to CoreC and its correctness proofs are mechanized by composing a shared
component Desugar_common with extensions such as Desugar_If1 and Desugar_Incr.

hooks in Rocqet. So an extension of Desugar_common can refine the nested family S to perform
specialized transformations.

For example, the trait Desugar_If1 enriches the behavior of Desugar_common. It refines S into a
variant of CoreC that includes one-armed if, by mixing the trait CoreC_If1 into S. It then defines the
nanopass that compiles away one-armed if in the source language S (transl_stmt) and proves the
nanopass correct (transl_stmt_correct). The definition of this nanopass is indeed microscopic, as
it only needs to handle the new Sif1 constructor introduced by CoreC_If1. The correctness proof
of this nanopass is microscopic too, needing to prove only the new cases introduced to sstep by
CoreC_If1. The proving can be done using tactics in much the same way as how the new cases
would be proven in a complete induction over all of sstep’s constructors.

Importantly, there is no duplicated logic among the Desugar_common family and its extensions
like the Desugar_If1 and Desugar_Incr traits. Each trait makes targeted, coordinated refinements to
the base family. Those extensibility hooks that need no refinement are automatically inherited and
reused. Were it not for the ability in Rocqet to refine the nested family S, we would have to either
resort to a single monolithic pass or duplicate the logic of the base family in each nanopass—neither
is modular.

This example shows that nested family polymorphism allows an entire family (e.g., S) to be
abstracted over its enclosing family, making it reusable in new contexts. Later in this section, we
will see that this expressive power scales to even larger components—for example, it allows an
entire compiler pass (e.g., CoreCgen, which itself contains nested families) to be abstracted over the
compiler family it is nested within.
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Fusing compiler transformations. In Figure 2, once all extensions to Desugar_common are com-
posed into CoreCgen, the resulting pass CoreCgen.transl_stmt, as well as its correctness proof
CoreCgen.transl_stmt_correct, are automatically synthesized by Rocqet.

Importantly, this generated transl_stmt does not apply the nanopasses in sequence—but instead
fuses them into a single pass, which will be efficient when extracted and run! This fusion is possible
because of late binding. In each nanopass trait, references to transl_stmt and transl_expr are
late bound; they are polymorphic to the family they are nested within. So when the individual
cases of the nanopass definition (e.g., the Cases of the FRecursion transl_stmt in Desugar_common

and Desugar_If1) are inherited into CoreCgen, these references are resolved to the transl_stmt

and transl_expr of the CoreCgen family. As a result, when CoreCgen.transl_stmt is applied to a
statement, it performs all the desugaring transformations in a single tree traversal. The recursive
functions responsible for this tree traversal are synthesized by Rocqet from all the inherited Cases.

This ability to fuse nanopasses seems unique to Rocqet. The nanopass framework [53, 30] im-
plemented in Scheme and Racket does not support this kind of fusion. It requires repeated tree
traversals, which leads to longer compilation times—a principal concern previously cited [30, 33].

Reuse across compiler extensions. A common recipe for an extensible compiler framework
is to exercise foresight in designing a compiler for a base language and to provide extensibility
hooks for anticipated feature extensions [44, 34].3 As an exercise, suppose that loops are not part of
CoreC. We want to structure loops as an extension to the base compiler Comp defined in Figures 1
and 2. This scenario is not unrealistic: modern domain-specific compilers, such as those based on
MLIR [34], often have a minimal nucleus and only acquire features such as structured control flow
when needed. In our exercise, let us extend the base compiler with three high-level loop constructs
(while, do-while, and for, as in CompCert) and translate them to a lower-level construct loop 𝑠1 𝑠2
in Clight.

We can define this extension as a new trait: Trait Comp_Loops extends Comp. The content of this
trait is shown in the right column of Figure 3. It extends the base compiler Comp shown in the left
column (part of the definition of Comp has been shown in Figures 1 and 2).4 Nested family polymor-
phism allows all the nested components of Comp, including the IRs and compiler transformations, to
be automatically inherited into and immediately reused by Comp_Loops. The trait Comp_Loops only
needs to refine the nested families CoreC, Desugar_common, Clight, and Clightgen, utilizing the new
expressive power in Rocqet. It makes coordinated changes to these extensibility hooks to accom-
modate the loop constructs: (1) it extends the inductive types in CoreC to model the three high-level
loop constructs, (2) it extends the inductively defined transl_stmt and transl_stmt_correct in
Desugar_common with new cases concerning loops, (3) it extends the inductive types in Clight to
model the lower-level loop construct, and (4) it extends the inductively defined lower_stmt and
lower_stmt_correct in Clightgen with new cases concerning the lowering of loops. Importantly,
there is no need to repeat, change, or recheck the contents of the base Comp family.

Comp_Loops can be composed with other compiler extensions, in a mix-and-match style, to create
new verified compilers, like CompX:

Family CompX extends Comp using Comp_Loops, … (* other extensions *) …. End CompX.

This composed compiler is not only modular but also efficient, because of fusion. The lower-
ing transformation of CompX does not apply the lowering defined in Comp.Clightgen and that in

3Crafting a good base compiler does require foresight on possible extensions. Rocqet does not magically provide this
foresight, but it will streamline the engineering of the extensible compiler framework, once a suitable design is identified.
4The definition of a family or trait can span multiple source files (e.g., Comp and Comp_Loops) or be contained in a single file
(e.g., CoreC). It is also possible for a single file to contain multiple families.
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Family Comp.

Family CoreC … Comp/CoreC.v

Trait CoreC_If1 … Comp/CoreC_If1.v

Trait CoreC_Incr … Comp/CoreC_Incr.v

Family C … Comp/C.v

(* these nested families and traits have been shown in Figure 1 *)

Family Desugar_common … Comp/Desugar_common.v

Trait Desugar_If1 … Comp/Desugar_If1.v

Trait Desugar_Incr … Comp/Desugar_Incr.v

Family CoreCgen … Comp/CoreCgen.v

(* these nested families and traits have been shown in Figure 2 *)

Family Clight. Comp/Clight.v

… (* Clight is lower-level than CoreC: no side effects in expr. *)
End Clight.

Family Clightgen. Comp/Clightgen.v

(* define the lowering transformation *)

FRecursion lower_expr on CoreC.expr motive

𝜆(_ : CoreC.expr), res (Clight.stmt * Clight.expr).

… (* pull side effects out of expressions *) …
End lower_expr.

FRecursion lower_stmt on CoreC.stmt motive

𝜆(_ : CoreC.stmt), res Clight.stmt.

… (* map CoreC statements to Clight statements *) …
End lower_stmt.

(* prove the lowering pass correct *)
FInduction lower_expr_correct on CoreC.estep

motive 𝜆 S1 t S2 (_ : CoreC.estep S1 t S2),

lower_expr_meets_spec S1 t S2.

… (* handle all estep cases *) …
End lower_expr_correct.

FInduction lower_stmt_correct on CoreC.sstep

motive 𝜆 S1 t S2 (_ : CoreC.sstep S1 t S2),

lower_stmt_meets_spec S1 t S2.

… (* handle all sstep cases *) …
End lower_stmt_correct.

End Clightgen.

(* compose two passes *)
FDefinition c_to_clight : C.stmt → Clight.stmt ^:=

Clightgen.lower_stmt ∘ CoreCgen.transl_stmt.

Trait Comp_Loops extends Comp.

Trait CoreC. Comp_Loops/CoreC.v

FInductive stmt : Type +=
| Swhile : expr → stmt → stmt

| Sfor : stmt → expr → stmt → stmt → stmt

| Sdowhile : stmt → expr → stmt.

FInductive cont : Type += ….

FInductive sstep : state → trace → state → Prop += ….

FInductive wt_stmt : tyenv → stmt → type → Prop += ….

FInduction sstep_pres on sstep motive ….

… (* handle only new sstep cases *) …
End sstep_pres.

End CoreC.

Trait Desugar_common. Comp_Loops/Desugar_common.v

FRecursion transl_stmt on S.stmt motive 𝜆_, res T.stmt.

… (* handle only new stmt cases *) …
End transl_stmt.

FInduction transl_stmt_correct on S.sstep motive ….

… (* handle only new sstep cases *) …
End transl_stmt_correct.

End Desugar_common.

Trait Clight. Comp_Loops/Clight.v

FInductive stmt : Type += | Sloop : stmt → stmt → stmt.

…
End Clight.

Trait Clightgen. Comp_Loops/Clightgen.v

FDefinition make_if (e : CoreC.expr)

(s1 s2 : Clight.stmt) : Clight.stmt ^:= ….

FRecursion lower_stmt on CoreC.stmt motive

𝜆(_ : CoreC.stmt), res Clight.stmt.

Case CoreC.Swhile e s ^:= ….

Case CoreC.Sfor s1 e s2 s3 ^:= ….

Case CoreC.Sdowhile s e ^:=

do s' ← make_if e Clight.Sskip Clight.Sbreak;

do ts1 ← lower_stmt s; ret (Clight.Sloop ts1 s')

End lower_stmt.

FInduction lower_stmt_correct on CoreC.sstep motive ….

… (* handle only new sstep cases *) …
End lower_stmt_correct.

End Clightgen.

Figure 3. Extending a base compiler to support loops.

Comp_Loops.Clightgen in sequence. Instead, Rocqet synthesizes recursive functions that fuse the low-
ering of loops and other constructs into a single pass. For instance, upon the command Extraction

CompX.Clightgen.lower_stmt, OCaml code is generated that uses a single tree traversal to pull side
effects out of expressions and lower loops.

Reuse along multiple dimensions. As we have seen, Rocqet allows for the reuse of mechanized
proofs along multiple dimensions: code representations, compiler transformations, and compiler
extensions. These dimensions arise at different levels of nesting within a large-scale compiler
project. Supporting reuse across all these dimensions arguably presents greater challenges than
what the expression problem [61] captures: even reuse along a single dimension already requires
reconciling two axes of extensibility—extending inductive types with new constructors, and extend-
ing inductively defined functions and proofs with new cases. FPOP is designed as a solution to the
expression problem in the setting of certified programming. If we were to use it for modularizing a
verified compiler, we would be forced to choose a single dimension of reuse and, therefore, unable
to address the two challenges outlined in Section 1. By supporting nested family polymorphism,
Rocqet addresses the needs of modularizing large-scale, complex certified developments.
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3 Rocqet: Language Design
Having seen an example of Rocqet in action, we now examine the design of the language abstractions,
which are responsible for Rocqet’s greater expressive power compared to FPOP.

A key generalization that Rocqet makes over FPOP is that it supports nested family polymorphism
[43, 45, 62, 32]. This new expressive power has two implications:
(a) Families and traits are extensibility hooks themselves.
(b) Software components are polymorphic to every family they are nested within.
For example, consider the recursive function transl_stmt (Figure 2), defined via the FRecursion

command by induction. The on clause indicates that the recursive function is defined by induction
over S.stmt, the stmt inductive type that S inherits from CoreC. It is first defined in Desugar_common.
The context in which this transl_stmt is defined is unaware of extensions to stmt such as one-armed
if statements, because S is simply defined to extend CoreC—nothing more. So transl_stmt is only
required to handle cases such as Sskip and Sseq that are defined in Comp.CoreC (Figure 1).

As Rocqet allows nested families to be extensibility hooks themselves (a), references to the nested
family S are late bound—that is, their meanings depend on the enclosing family. So when this
transl_stmt is inherited into Desugar_If1, although it is still defined by induction on S.stmt, the
context is now aware of the extension to stmt by CoreC_If1, because S now has a different, refined
meaning—its behavior is refined by CoreC_If1. Hence, for exhaustivity of induction, Rocqet requires
transl_stmt to be extended with a case that handles the Sif1 constructor introduced by CoreC_If1.
Rocqet allows software components to be polymorphic to every enclosing family (b). So references

to S is polymorphic, not only to the immediately enclosing family containing the desugaring trans-
formations, but also to the outer family containing the entire compiler. Consider the transl_stmt

in Comp_Loops/Desugar_common.v. Its on clause still refers to S.stmt, and S is still defined to extend
CoreC. But since the outer family Comp_Loops refines CoreC by adding three new constructors to
stmt, transl_stmt must be extended to handle these new cases.

Refinement. Nested software components are extensibility hooks that can be refined (aka further-
bound [35]) when any of its enclosing families is extended.
• FInductive definitions can be refined by adding new constructors.
Compared to FPOP, Rocqet supports mutual FInductive definitions and, by consequence, mutual
FRecursion and mutual FInduction that operate by induction over mutually inductive types.
In addition, Rocqet allows a singly inductive type to be refined into a mutually inductive type.
This expressive power finds use in defining a compiler extension Comp_Switch supporting switch
statements. For example, the stmt inductive type in CoreC is refinedwith a new constructor Sswitch
and also with a new mutually inductive type lbl_stmts modeling the cases of a switch statement.
(* Refine the CoreC family in the Comp_Switch extension *)

FInductive stmt : Type += Comp_Switch/CoreC.v

| Sswitch : expr → lbl_stmts → stmt

with lbl_stmts : Type ^:=

| LSnil: lbl_stmts

| LScons: option Z → stmt → lbl_stmts → lbl_stmts.

FRecursion find_label on stmt motive

𝜆 (_ : stmt), label → cont → option (stmt * cont)

with find_label_ls on lbl_stmts motive

𝜆 (_ : lbl_stmts), label → cont → option (stmt * cont).

…
End find_label with find_label_ls.

Accordingly, a find_labels function is made mutually recursive with another find_label_ls

function, by mutual induction over stmt and lbl_stmts.
• FRecursion and FInduction definitions can be refined by adding new cases in accordance with
the refinement of the inductive types they are defined over.

• Family and Trait definitions can be refined in three ways: by refining their existing components,
by adding new components, or by refining the family or trait they extend.
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To illustrate the last point, consider Desugar_common (Figure 2). Rocqet allows the identity of the
family that S extends to be an extensibility hook, which Desugar_If1 refines. For soundness,
Rocqet requires this refinement to preserve that S still descends from CoreC.
To prevent circular reasoning, Rocqet requires that the relative order of nested components be
preserved in derived families, as FPOP does.

• Refinement can also take the form of overriding. Opaque proofs can be freely overridden, as they
possess no computational content. Components left undefined (think of them as abstract methods
in OO languages) can also be overridden.

Traits and composition. Traits are reusable components that refine the behavior of families they
are mixed into [5, 14, 19, 3, 24, 46]. For example, the command Trait CoreC_If1 extends CoreC

begins the definition of a trait that can only be mixed into a family that is, or extends, CoreC. The
command Family C extends CoreC using CoreC_If1, CoreC_Incr begins the definition of a family
constructed via mixin composition: extending the behavior of CoreC with the refinements made by
the two traits.
Rocqet allows nested families to be refined by traits. For instance, the trait Comp_Loops refines the

nested family CoreC. Notice that when a trait refines nested families, Rocqet requires the families
to be declared as traits in the enclosing trait. For instance, Comp_Loops declares CoreC as a trait
(Figure 3), rather than as a family as Comp does. This requirement is because traits can only bemixed
into families; they cannot be used as families. The CoreC in trait Comp_Loops is intended to be mixed
into the CoreC in the family that Comp_Loops is mixed into.

Mixin composition may entail nested composition, if the family and traits being composed contain
nested families or traits. Consider the family CoreC, the trait CoreC_If1, and the family C in CompX.
All these components are implicit in CompX. The programmer writes no code for them; they are
automatically synthesized by Rocqet via nested composition.
• CompX.CoreC is a family constructed by mixing Comp_Loops.CoreC into Comp.CoreC.
• CompX.CoreC_If1 is a trait constructed by refining Comp.CoreC_If1. The refinement is about the
families that CoreC_If1 can be mixed into: it is required to be mixed into a family that is, or
extends, the just constructed CompX.CoreC.

• CompX.C is a family constructed by composing the verbatim contents of Comp.C (which is empty),
the just constructed CompX.CoreC_Incr, CompX.CoreC_If1, and CompX.CoreC.

Any ambiguity arising from mixin composition and nested composition is reported to the program-
mer as a conflict that must be resolved.

Mixin composition and nested composition may generate extra proof obligations. This is an in-
stance of the known phenomenon of feature interaction [4]: features that work correctly in isolation
may require coordination when composed. For example, consider two independent extensions, one
adding a new constructor to an inherited FInductive type and another adding a new FRecursion

function over that inductive type. Rocqet generates a proof obligation when the two extensions are
composed, requiring that the extra recursive function handle the extra constructor.

Traits are not present in FPOP [27], but FPOP does support mixins by allowing the dual use
of families as mixins. Muddling a conceptual distinction aside, this conflation of families and
mixins has performance consequences. Our experience suggests that it would not scale well to
large-scale developments in the presence of nested family polymorphism. The conflation would
cause extensions like Comp_Loops and Desugar_If1 to be compiled as complete families, which may
require excessive memory usage, an issue not uncommon in large-scale verification efforts using
the Rocq prover (e.g., [22]).
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Equalities involving FRecursion. In Rocqet, nested components are polymorphic to every family
they are nested within. This flexibility means that nested FRecursion definitions do not come with
a fixed meaning; they can acquire new cases when inherited into a derived family. As a result,
within the families that define or refine an FRecursion say, transl_stmt in Comp.Desugar_common,
we cannot rely on the existence of a definitional equality between transl_stmt and a fixed point
construction. That is, a reference to transl_stmt within Comp.Desugar_common—or even a reference
to Desugar_common.transl_stmt within Comp—cannot be unfolded to a fixed-point definition exhaus-
tively constructed from all the cases known in that context. Such a definitional equality would
prevent transl_stmt from acquiring new cases in derived families of Comp or of Desugar_common.

Fundamentally, the definitional equality is too strong to hold because a recursor (aka eliminator )
is not available. If stmt were an Inductive (non-extensible) instead of an FInductive (extensible), a
recursor like stmt_rect would be available, where P is known as the motive:
stmt_rect : ∀ (P : stmt → Type), P Sskip → (∀ s1, P s1 → ∀ s2, P s2 → P (Sseq s1 s2)) →

(∀ e, P (Sdo e)) → (∀ s1, P s1 → ∀ s2, P s2 → ∀ e, P (Sif e s1 s2)) → … → ∀ t, P t

The recursor is the induction principle used to define recursive functions or induction proofs over
stmt. It requires that stmt be exhaustively generated by the constructors Sskip, Sseq, etc.

Although definitional equalities based on recursors are not possible, certain propositional equali-
ties still hold. For example, like FPOP, Rocqet automatically generates equalities like
∀ s1 s2, transl_stmt (S.Sseq s1 s2) = do s1'← transl_stmt s1; do s2'← transl_stmt s2; ret (T.Sseq s1' s2')

upon End transl_stmt in Comp.Desugar_common. Such propositional equalities capture the compu-
tational behavior of transl_stmt on each constructor of S.stmt known in that context. An fsimpl

tactic exists in Rocqet to facilitate rewriting along these equalities. It is useful in proofs such as
Comp.Desugar_common.transl_stmt_correct to rewrite say, transl_stmt (S.Sseq s1 s2). Compared
to FPOP, Rocqet makes quality-of-life improvements to tactics. For example, fsimpl can be used in
proof scripts to rewrite goals and hypotheses in a way that appears as if Rocq’s simpl tactic were
used to unfold or refold fixed-point definitions. fconstructor is a new tactic that can be used to
automatically apply constructors of an FInductive in a way that appears as if Rocq’s constructor
tactic were used.

Equalities involving Family and Trait. In Rocqet, nested families and traits do not have fixed
meanings within the context they are defined. In Figure 2, it is this flexibility that allows the nested
family S to be refined in Desugar_If1, Desugar_Incr, and CoreCgen.

However, it is sometimes useful to have definitional equalities over nested families or traits.
Consider the function c_to_clight shown in Figure 3. It chains two compiler passes, transforming a
C statement to a Clight statement: Clightgen.lower_stmt ∘ CoreCgen.transl_stmt. For this function
to be well-typed, the input and output types must match. The input type of CoreCgen.transl_stmt
is CoreCgen.S.stmt, while the required input type of c_to_clight is C.stmt. Rocqet considers these
two types interchangeable, because CoreCgen declares S via the command Family S ^:= C. This
command refines S to be definitionally equal to C, preventing S from being further refined by any
family extending or refining CoreCgen. By contrast, if CoreCgen had declared S via the command
Family S extends C, similar to how Desugar_common declares S, then CoreCgen.S and C would not be
considered definitionally equal, and thus c_to_clight would be ill-typed.

Notice that despite the strong equality between CoreCgen.S and C, the nested family C may
still be refined in a derived family of Comp. For example, statements in CompX.C include loops,
yet CompX.CoreCgen.S is still definitionally equal to CompX.C. As a result, running the command
Check CompX.c_to_clight will succeed and print the type CompX.C.stmt → CompX.Clight.stmt.
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1 … Comp/CoreC.v

2 Module Type Comp°CoreC°Ctx.

3 End Comp°CoreC°Ctx.

5 Module Type Comp°CoreC°stmt°Ctx

6 (self[Comp]: Comp°CoreC°Ctx).

7 Include Comp°CoreC°expr°Ctx self[Comp].

8 Include Comp°CoreC°expr self[Comp].

9 End Comp°CoreC°stmt°Ctx.

11 Module Type Comp°CoreC°stmt

12 (self[Comp]: Comp°CoreC°Ctx)

13 (self[CoreC]: Comp°CoreC°stmt°Ctx

14 self[Comp]).

15 Axiom stmt: Type.

16 Axiom Sskip: stmt

17 Axiom Sseq: stmt → stmt → stmt.

18 Axiom Sdo: self[CoreC].expr → stmt.

19 … (* declare other stmt constructors *) …
20 End Comp°CoreC°stmt.

22 Module Type Comp°CoreC°env°Ctx

23 (self[Comp]: Comp°CoreC°Ctx).

24 Include Comp°CoreC°stmt°Ctx self[Comp].

25 Include Comp°CoreC°stmt self[Comp].

26 End Comp°CoreC°env°Ctx.

28 Module Comp°CoreC°env

29 (self[Comp]: Comp°CoreC°Ctx)

30 (self[CoreC]: Comp°CoreC°env°Ctx

31 self[Comp]).

32 Definition env ^:= PTree.t

33 (self[Comp].block * self[Comp].type).

34 End Comp°CoreC°env.

35 … (* translate other fields of CoreC *) …

37 Module Type Comp°CoreC°Sig

38 (self[Comp]: Comp°CoreC°Ctx).

39 …
40 Include Comp°CoreC°stmt self[Comp].

41 Include Comp°CoreC°env self[Comp].

42 …
43 Module Type stmt°Art ^:=

44 Comp°CoreC°stmt.

45 …
46 End Comp°CoreC°Sig.

48 Module Type Comp°CoreC

49 (self[Comp]: Comp°CoreC°Ctx).

50 Declare Module CoreC:

51 Comp°CoreC°Sig self[Comp].

52 End Comp°CoreC.

53 Comp/CoreC_If1.v

54 Module Type Comp°CoreC_If1°Ctx.

55 Include Comp°CoreC°Ctx.

56 Include Comp°CoreC.

57 End Comp°CoreC_If1°Ctx.

58 …
59 Module Type Comp°CoreC_If1°stmt°Ctx

60 (self[Comp]: Comp°CoreC_If1°Ctx).

61 Include Comp°CoreC_If1°expr°Ctx

62 self[Comp].

63 Include Comp°CoreC_If1°expr self[Comp].

64 End Comp°CoreC_If1°stmt°Ctx.

65 Module Type Comp°CoreC_If1°stmt

66 (self[Comp]: Comp°CoreC_If1°Ctx)

67 (self[CoreC_If1]:

68 Comp°CoreC_If1°stmt°Ctx self[Comp]).

69 Include self[Comp].CoreC.stmt°Art

70 self[Comp] self[CoreC_If1].

71 Axiom Sif1:

72 self[CoreC_If1].expr → stmt → stmt.

73 End Comp°CoreC_If1°stmt.

74 …

75 Module Type Comp°C°Ctx. Comp/C.v

76 Include Comp°CoreC_Incr°Ctx.

77 Include Comp°CoreC_Incr.

78 End Comp°C°Ctx.

79 …
80 Module Type Comp°C°stmt°Ctx

81 (self[Comp]: Comp°C°Ctx).

82 Include Comp°C°expr°Ctx self[Comp].

83 Include Comp°C°expr self[Comp].

84 End Comp°C°stmt°Ctx.

86 Module Type Comp°C°stmt

87 (self[Comp]: Comp°C°Ctx)

88 (self[C]: Comp°C°stmt°Ctx self[Comp]).

89 Include

90 self[Comp].Comp°CoreC.stmt°Art

91 self[Comp] self[C].

92 Include

93 self[Comp].Comp°CoreC_If1.stmt°Art

94 self[Comp] self[C].

95 End Comp°C°stmt.

96 …

Figure 4. Translation of selected components from Figure 1.

Also notice that outside the family Comp or CompX, references to compiler components are no longer
late bound but are resolved to fixed meanings. As a result, CompX.CoreCgen.transl_stmt is defini-
tionally equal to a fixed-point function that exhaustively handles all constructors in CompX.C.stmt.

4 Compiling Rocqet to Rocq
We implement the language design described in Section 3 as a Rocq plugin that compiles high-level
Rocqet features into Rocq. Despite Rocqet’s greater expressive power compared to FPOP [27], our
implementation is more efficient. Compilation is modular, as compilation artifacts—even for deeply
nested components—can be shared without having to be rechecked. The compilation strategy also
allows for seamless integration with interactive theorem proving, as components can be compiled
step by step no matter how deeply nested they are.

Compiling nested components into multiply-parameterized modules. The essence of in-
heritance is implicit self-parameterization [7]. Nested family polymorphism extends this idea to
all fields (i.e., nested components) within a family, including nested families, making each field
polymorphic to its context. We take this principle quite literally to develop our compilation strategy.
Compiling a field yields two artifacts:
• A Module Type representing the field’s typing context within its immediately enclosing family.
• A Module Type (or Module, if the field is not an extensibility hook) parameterized by this context,
representing the field itself.

Both artifacts may also be parameterized by additional context parameters that represent outer
families enclosing the current family. For compiling the next field, its context artifact is constructed
from the two compilation artifacts of the current field.
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As an example, consider the field Comp.CoreC.stmt in Figure 1. It is compiled to two artifacts (Fig-
ure 4). First, the module type Comp°CoreC°stmt°Ctx (lines 5–9) represents the field’s context; it con-
tains the compilation artifacts of the fields preceding stmt. Second, the module type Comp°CoreC°stmt
(lines 11–20) represents the field itself and has a parameter called self[CoreC] whose type is the
context artifact. Both artifacts are parameterized by self[Comp] representing the outer family Comp.
To reduce visual clutter, we use a lighter color for prefixes of mangled names; they are not the
focus of the presentation.

Names bound in the typing context can be referenced via these self parameters. For example, in Fig-
ure 1, stmt’s constructor Sdo has type expr → stmt, which is compiled to self[CoreC].expr → stmt

(line 18). Notice self[CoreC] has type Comp°CoreC°stmt°Ctx self[Comp] (lines 13–14), which de-
pends on self[Comp]. So the type self[CoreC].expr → stmt is polymorphic to each of the enclosing
families CoreC and Comp. Hence, the compilation artifact of Sdo can be shared with extensions of
CoreC and extensions of Comp, even when they add new constructors to expr.

As another example, consider the field CoreC of Comp. Again, this field has two compilation
artifacts: the context Comp°CoreC°Ctx (lines 2–3), and the field itself Comp°CoreC (lines 48–52),
which is parameterized by self[Comp] : Comp°CoreC°Ctx. These two artifacts are included as the
context information (lines 55–56) for compiling the field CoreC_If1 occurring after CoreC in the Comp
family, just as the two compilation artifacts of stmt (lines 5–9, 11–20) are included as the context
information (lines 24–25) for compiling the field env occurring after stmt in the Comp.CoreC family.

Compiling FInductive. FInductives are extensibility hooks, so they are compiled to module types.
For example, we have seen that stmt in Figure 1 is translated to the module type Comp°CoreC°stmt.
Importantly, the module type does not define a concrete Inductive type, which would be closed to
extension. Instead, it only states the existence of stmt and the type of its constructors; it does not
claim that stmt is exhaustively generated by these constructors. In particular, it does not provide a
recursor like stmt_rect. The compilation artifact does provide a partial recursor, as in FPOP [27],
that facilitates proving constructor disjointness and injectivity; we omit it here for brevity.

As we will see, this compilation artifact of stmt can be shared with extensions of CoreC and
extensions of Comp, which may refine stmt by adding new constructors.

Compiling FRecursion and FInduction. These definitions are extensibility hooks too, so they are
compiled to module types. For example, the field Comp.Desugar_common.transl_stmt (Figure 2) is
translated to the module type Comp°Desugar_common°transl_stmt (Figure 5, lines 13–20), as well as
a context artifact (omitted in Figure 5). The module type Comp°Desugar_common°transl_stmt only
declares the type of the function but does not provide an implementation.

Though we cannot define transl_stmt as a fixed point by exhaustive induction at this point yet
(to ensure extensibility), as discussed in Section 3, we do want the computational behaviors avail-
able as propositional equalities. To this end, a module type Comp°Desugar_common°transl_stmt°CB

(lines 22–31) is emitted, which declares the computational behaviors of transl_stmt on con-
structors of S.stmt. For instance, the computational behavior of transl_stmt for Sskip, named
transl_stmt°Sskip°eq, is axiomatized with the equality shown on lines 26–29. The right-hand side
of the equality is a reference to the translation of the Case Sskip handler, which is defined in the
module Comp°Desugar_common°transl_stmt°Cases (lines 2–11), which has been made available in
the context. So Rocq can unfold the reference and simplify the axiomatized equality to

self[Desugar_common].transl_stmt self[Desugar_common].S.Sskip = ret self[Desugar_common].T.Sskip .
Rocqet’s fsimpl tactic emulates Rocq’s simpl tactic, by performing rewriting along such axiomatized
equalities and also unfolding.
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1 … Comp/Desugar_common.v

2 Module

3 Comp°Desugar_common°transl_stmt°Cases

4 (self[Comp]: Comp°Desugar_common°Ctx)

5 (self[Desugar_common]:

6 Comp°Desugar_common°S°Ctx self[Comp]).

7 Def transl_stmt°Sskip ^:=

8 ret self[Desugar_common].T.Sskip.

9 … (* translate other case handlers *) …
10 End

11 Comp°Desugar_common°transl_stmt°Cases.

13 Module Type

14 Comp°Desugar_common°transl_stmt

15 (self[Comp]: Comp°Desugar_common°Ctx)

16 (self[Desugar_common]: …).

17 Axiom transl_stmt :

18 self[Desugar_common].S.stmt →
19 res self[Desugar_common].T.stmt.

20 End Comp°Desugar_common°transl_stmt.

22 Module Type

23 Comp°Desugar_common°transl_stmt°CB

24 (self[Comp]: Comp°Desugar_common°Ctx)

25 (self[Desugar_common]: …).

26 Axiom transl_stmt_Sskip_eq:

27 self[Desugar_common].transl_stmt

28 self[Desugar_common].S.Sskip =

29 self[Desugar_common].transl_stmt°Sskip.

30 …(* axiomatize equalities for other cases *)…
31 End Comp°Desugar_common°transl_stmt°CB.

32 …

33 … Comp/Desugar_If1.v

34 Module

35 Comp°Desugar_If1°transl_stmt°Cases

36 (self[Comp]: Comp°Desugar_If1°Ctx)

37 (self[Desugar_If1]: …).

38 Def transl_stmt°Sif1 e s IHs ^:=

39 do e' ←
40 self[Desugar_If1].transl_expr e;

41 do s' ← IHs;

42 ret (self[Desugar_If1].T.Sif1 e' s'

43 self[Desugar_If1].T.Sskip).

44 End Comp°Desugar_If1°transl_stmt°Cases.

46 Module Type

47 Comp°Desugar_If1°transl_stmt

48 (self[Comp]: Comp°Desugar_If1°Ctx)

49 (self[Desugar_If1]: …).

50 Include Comp°Desugar_common°transl_stmt

51 self[Comp] self[Desugar_If1].

52 End Comp°Desugar_If1°transl_stmt.

54 Module Type

55 Comp°Desugar_If1°transl_stmt°CB

56 (self[Comp]: Comp°Desugar_If1°Ctx)

57 (self[Desugar_If1]: …).

58 Axiom transl_stmt_Sif1_eq: ∀ e s IHs,

59 self[Desugar_If1].transl_stmt

60 (self[Desugar_If1].S.Sif1 e s) =

61 self[Desugar_If1].transl_stmt°Sif1

62 e s IHs.

63 End Comp°Desugar_If1°transl_stmt°CB.

64 …

65 … Comp/CoreCgen.v

66 Module Type Comp°CoreCgen°Sig

67 (self[Comp]: Comp°CoreCgen°Ctx).

68 Module S ^:= self[Comp].C.

69 Module T ^:= self[Comp].CoreC.

70 …
71 Include

72 Comp°Desugar_common°transl_stmt°Cases

73 self[Comp].

74 Include

75 Comp°Desugar_If1°transl_stmt°Cases

76 self[Comp].

77 Module transl_stmt°Cases°Art ^:= ….

79 Include

80 Comp°Desugar_common°transl_stmt°CB

81 self[Comp].

82 Include

83 Comp°Desugar_If1°transl_stmt°CB

84 self[Comp].

85 Module Type transl_stmt°CB°Art ^:= ….

86 …
87 End Comp°CoreCgen°Sig.

89 Module Type Comp°CoreCgen

90 (self[Comp]: Comp°CoreCgen°Ctx).

91 Declare Module CoreCgen:

92 Comp°CoreCgen°Sig self[Comp].

93 End Comp°CoreCgen.

Figure 5. Translation of selected components from Figure 2.

Importantly, FRecursion need not be recompiled for families by which it is inherited or refined.
These families can reuse (via Rocq’s Include command) the already compiled case handlers and
computational behaviors, without having them rechecked, thanks to the self-parameterization of the
compilation artifacts. For example, the compilation of CoreCgen in Comp reuses the transl_stmt case
handlers and computational behaviors compiled for Desugar_common and Desugar_If1 (lines 71–84),
by instantiating the self parameter of the outer family explicitly and the self parameter of the inner
family implicitly (explained later).

FInduction definitions are compiled similarly, but since these proofs are considered opaque, no
computational behavior needs to be declared.

Compiling nested Family. Nested families, if they are extensibility hooks, are compiled into
module types. Consider CoreC in Figure 1. Upon End CoreC, the family is compiled into a module
type Comp°CoreC (Figure 4, lines 48–52). This module type simply declares that a module named
CoreC exists and has signature Comp°CoreC°Sig, without binding the name CoreC to any concrete im-
plementation of the signature. The module type Comp°CoreC is then included as context information
(e.g., lines 55–56) for compiling other fields in Comp; not revealing the concrete implementation of
CoreC ensures that those other fields can reference CoreC’s contents only through late binding.

The signature Comp°CoreC°Sig (Figure 4, lines 37–46), parameterized by self[Comp] representing
the enclosing family, is defined by including the compilation artifact of each field of CoreC. Recall that
these artifacts have two parameters, self[Comp] and self[CoreC]. While the self[Comp] parameter
can be easily instantiated by the self[Comp] in scope, the instantiation of self[CoreC] is left to Rocq:
Rocq implicitly instantiates any missing module argument with the current interactive module
environment, which is exactly what we want!

Now, consider the compilation of the family C nested in Comp (Figure 1). C extends CoreC, so how
does its compilation reuse the compilation artifacts of say, CoreC.stmt? One idea would be to include



14 Oghenevwogaga Ebresafe, Ian Zhao, Ende Jin, Arthur Bright, Charles Jian, and Yizhou Zhang

in Comp°C°stmt the compilation artifact of CoreC.stmt via Include Comp°CoreC°stmt self[Comp]. But
in a derived family of Comp, like CompX, CoreC.stmtmay havemore constructors than Comp°CoreC°stmt

declares, which would prevent Comp°C°stmt from being reused by CompX°C°stmt. The solution is to
not hard-code the compilation artifact of CoreC.stmt to be included in Comp°C°stmt, but instead
to make the inclusion truly polymorphic to the enclosing Comp family via a self[Comp] prefix
(Figure 4, lines 89–91): Include self[Comp].CoreC.stmt°Art self[Comp]. This translation requires
the signatures Comp°CoreC°Sig and CompX°CoreC°Sig to bind the name stmt°Art to Comp°CoreC°stmt

and CompX°CoreC°stmt, respectively. The signatures act like “dispatch tables” that enable the late
binding of compilation artifacts.

Compiling nested Family with definitional equality. As discussed in Section 3, nested families
are not always extensibility hooks. Nested families, if they are not extensibility hooks, are compiled
into concrete modules. For example, in Figure 2, CoreCgen.S is specified to be definitionally equal
to C. This relationship is reflected in Comp°CoreCgen°Sig (Figure 5, lines 66–87). Rather than merely
declaring the existence of S, it binds S via Module S ^:= self[Comp].C (line 68). Notice the module S

is definitionally equal to the self-prefixed reference self[Comp].C, so this definitional equality is
preserved in all contexts where Comp°CoreCgen°Sig is included, even if C is refined.

Compiling Trait. Traits are compiled similarly to families, but with two key distinctions. First,
unlike families, which are compiled by using Include to reuse the compilation artifacts of inherited
fields, traits only compile their delta with respect to the family they will be mixed into. Second, when
a top-level family is closed (e.g., End Comp), nested families must be compiled to concrete modules,
whereas traits need not be. Hence, traits have leaner compilation artifacts, which offer them a
performance advantage. Compared to FPOP, which conflates families and mixins and lacks support
for traits, our implementation of Rocqet significantly reduces memory usage during compilation.

Compiling FDefinition. By default, an FDefinition cannot be overridden and is thus compiled to
a concrete module. An example is CoreC.env in Figure 1. Its compilation artifact Comp°CoreC°env
(Figure 4, lines 28–34) is a concrete module that exposes the implementation of CoreC.env, which
prevents it from being refined anywhere Comp°CoreC°env is included. An FDefinition that is left
undefined, by contrast, can be overridden and is thus compiled to a module type that merely
specifies the type of the field without revealing the concrete implementation.

Compiling top-level Family. Compilation differs for nested families and top-level families. Closing
a nested family generates a module type parameterized by its enclosing families. However, closing
a top-level family should produce a concrete module without any self parameters. This concrete
module is really the fixed point of the self-parameterized translation of the family’s fields.

This fixed point is taken by a well-founded induction over the list of fields in the family: each
field’s compilation artifact is included in the same order as it appears in the Rocqet program,
with the appropriate self parameters applied. As noted earlier, the self parameter representing the
immediately enclosing family is left for Rocq to instantiate, while the remaining self parameters
are explicitly instantiated. Below, we illustrate how different types of fields participate in the
construction of the fixed points (Figure 6) compiled for the top-level families Comp and CompX.
• FDefinition. Take CompX.C.env as an example. Its concrete implementation is available in Figure 4,
in the module Comp°CoreC°env. In Figure 6, this module is included via the command Include

Comp°CoreC°env C.Ctx (line 51) without having to be rechecked.
• FInductive. Take Comp.C.stmt as an example. The inductive type and its constructors, which are
only axiomatized in Comp°C°stmt in Figure 4, are concretized as a Rocq Inductive type in Figure 6
(line 9), which comes with recursors that will allow FRecursion and FInduction over stmt to also
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1 Module Comp.

2 Module CoreC. … End CoreC. (* concretize CoreC *)

4 Module C. (* concretize C *)

5 Module Ctx.

6 Include CoreC.Ctx. Module CoreC ^:= Comp.CoreC.

7 End Ctx.

8 Inductive expr : Type ^:= ….

9 Inductive stmt : Type ^:= Sskip : … | … | Sif1 : ….

10 Include Comp°CoreC°env C.Ctx.

11 …
12 End C.

14 Module Desugar_common. … (* concretize Desugar_common *)

15 End Desugar_common.

17 Module CoreCgen. (* concretize CoreCgen *)

18 Module Ctx.

19 Include Desugar_common.Ctx.

20 Module Desugar_common ^:= Comp.Desugar_common.

21 End Ctx.

22 Module S ^:= C. Module T ^:= CoreC.

23 …
24 (* reuse case handlers *)
25 Include Comp°Desugar_common°transl_stmt°Cases

26 CoreCgen.Ctx.

27 Include Comp°Desugar_If1°transl_stmt°Cases

28 CoreCgen.Ctx.

29 (* concretize transl_stmt using the recursor of stmt *)

30 Def transl_stmt: S.stmt → res T.stmt ^:=

31 stmt_rect transl_stmt°Sskip … transl_stmt°Sif1.

32 (* concretize computational behaviors of transl_stmt *)
33 Fact transl_stmt_Sskip_eq:

34 transl_stmt S.Sskip = transl_stmt°Sskip.

35 Proof. reflexivity. Qed.

36 …
37 End CoreCgen.

39 … (* concretize other fields of Comp *)
40 End Comp.

41 Module CompX.

42 Module CoreC. … End CoreC. (* concretize CoreC *)

44 Module C. (* concretize C *)

45 Module Ctx.

46 Include CoreC.Ctx. Module CoreC ^:= CompX.CoreC.

47 End Ctx.

48 Inductive expr : Type ^:= ….

49 Inductive stmt : Type ^:= Sskip : … | … | Sif1 : …
50 | Swhile : … | Sfor : … | Sdowhile : ….

51 Include Comp°CoreC°env C.Ctx.

52 …
53 End C.

55 Module Desugar_common. … (* concretize Desugar_common *)

56 End Desugar_common.

58 Module CoreCgen. (* concretize CoreCgen *)

59 Module Ctx.

60 Include Desugar_common.Ctx.

61 Module Desugar_common ^:= CompX.Desugar_common.

62 End Ctx.

63 Module S ^:= C. Module T ^:= CoreC.

64 …
65 (* reuse case handlers *)
66 Include Comp°Desugar_common°transl_stmt°Cases

67 CoreCgen.Ctx.

68 Include Comp°Desugar_If1°transl_stmt°Cases

69 CoreCgen.Ctx.

70 Include Comp_Loops°Desugar_common°transl_stmt°Cases

71 CoreCgen.Ctx.

72 (* concretize transl_stmt using the recursor of stmt *)

73 Def transl_stmt: S.stmt → res T.stmt ^:= stmt_rect

74 transl_stmt°Sskip … transl_stmt°Sif1

75 transl_stmt°Swhile transl_stmt°Sfor transl_stmt°Sdowhile.

76 …
77 End CoreCgen.

79 … (* concretize other fields of CompX *)
80 End CompX.

Figure 6. Translation of top-level families Comp (Figure 3) and CompX. All self-parameterizations are eliminated.

be concretized. For mutual FInductive types, in addition to including the corresponding mutual
Inductive types, Rocqet also generates mutual recursors on an as-needed basis.

• FRecursion and FInduction. Take Comp.CoreCgen.transl_stmt as an example. The recursive func-
tion and its computational behaviors, which are only axiomatized previously, are now concretized
in Figure 6. First, the concrete definitions of all the case handlers are included, without being
rechecked (lines 25–28).Then, the recursive function is defined by applying the recursor rect_stmt
to the case handlers (lines 30–31). Finally, the computational behaviors can be proved trivially by
reflexivity, as the two sides of the equality are now definitionally equal (lines 33–36). FInduction
is concretized similarly, but without proving any computational behavior.

• Nested Family. Nested families are concretized into nested modules, so that it is possible to
access nested components via, for example, Extraction CompX.CoreCgen.transl_stmt. The fields
of a nested family are concretized with the same mechanism as described herein. Before the
fields are concretized, a module Ctx is emitted that represents the enclosing family of the nested
family. For example, in Figure 6, the CoreCgen family nested in CompX is concretized to a nested
module with the same name (lines 58–77). Before concretizing the fields of CoreCgen, a module
Ctx (lines 59–62) is emitted. This module Ctx can be used to instantiate the self parameter when
reusing the compilation artifact of a nested component. For example, the case handler that has
been compiled for Comp_Loops.Desugar_common.transl_stmt is reused via the command Include

Comp_Loops°Desugar_common°transl_stmt°Cases CoreCgen.Ctx on lines 70–71.
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Trusted base. The trusted base of any development using Rocqet consists of the Rocq prover and
the Rocqet compilation process. Trust in the compilation process is to a large extent mitigated,
because the compiled code is checked by Rocq. The only trust required in the compilation process
is that it correctly generates the language definition and the final theorem statement; no trust
is placed in any axiomatized definitions or facts. For executing the extracted code, trust is also
required in Rocq’s extraction machinery and the OCaml compiler.

Performance. As we show later, our implementation of Rocqet scales significantly better than
FPOP [27] despite providing greater expressive power.The speedup is due to careful language-design
and engineering decisions, such as the decoupling of the mixin functionality from families.

5 A Formal Model of Rocqet: A Core Dependent Type Theory
We provide a formal model of Rocqet as a core dependent type theory. It extends the Martin-Löf
dependent type theory [37] and builds on the formal model of FPOP [27], incorporating facilities to
encode nested family polymorphism. In particular, it encodes a family with a language construct
that resembles a record (of nested components) but where each component is universally quantified
over all the components in its context—including those in all of its enclosing families. The core
type theory also has a construct for encoding traits as functors that can be composed. We prove
the canonicity and consistency of this core type theory and provide example encodings. The main
paper focuses on the design and implementation of Rocqet; we defer the development of the formal
model to Section A and Section B.

6 Case Study: An Extensible Certified C Compiler Framework
We apply Rocqet and the reuse strategies outlined in Section 2 to construct an extensible certified
compiler framework for C-like languages. While we build on CompCert’s IRs, we make some key
architectural innovations that prioritize modularity and promote reuse.

Base compiler. Our development begins with a minimal subset of CompCert C.This base language
excludes structured loops, switch statements, function calls, heap memory access, and structs and
unions. The resulting language resembles Imp [49]. A verified compiler for this base language is
mechanized. The IRs, passes, and simulation proofs are reused by all extensions.

Reuse across similar IRs. CompCert’s front end contains three closely related languages: Csharp-
minor, Cminor, and CminorSel (Figure 7). Among them, Csharpminor and Cminor have nearly
identical syntax, differing mainly in their representation of switch statements; Cminor has a lower-
level switch construct. Their key semantic distinction lies in stack-space modeling: Csharpminor
uses a map data structure, while Cminor utilizes a native stack pointer. CminorSel differs from
Cminor by introducing machine-dependent instructions but maintains similar syntax and semantics
otherwise. We factored these common features into a nested base family Cfam. The derived families
Csharpminor, Cminor, and CminorSel only need to model their distinctive features by instantiating
or refining extensibility hooks. This design makes the distinctions between these IRs explicit.

In CompCert’s back end, two IRs, Linear and Mach, share the same instruction structure but differ
in the modeling of stack access in the semantics: Linear uses an abstract slot, while Mach employs
pointer-offset addressing. In our framework, the IRs are specified as derived families (Linear and
Mach) of a base family Lfam. Rocqet enables the sharing of both syntactic and semantic definitions
across these two IRs.

Nanopasses. We decompose CompCert’s program transformations into a nanopass style [52,
53, 30] for improved modularity. For example, the SimplExpr pass of CompCert removes side
effects from C expressions, turning them into Clight, where only statements have side effects.
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Clight··· Csharpminor Cminor CminorSel RTL LTL Linear Mach x86

RISC-Vmodular ISA
modelsreuse across passes

reuse across IRs reuse across IRs

Figure 7. Rocqet promotes modular design and reuse of code representations and transformations.

We decompose this pass into nanopasses. Each nanopass focuses on only one type of effectful
expressions (Epostincr, Eassignop, etc.). These nanopasses are mechanized as traits that extend
a base translation between C and Clight. Each of them performs a surgical transformation and
proves that transformation correct. The complete SimplExpr pass is then obtained by mixing these
nanopasses into the base translation.

Reuse across compiler passes. The compiler passes between Csharpminor, Cminor, and CminorSel

are known as Cminorgen and Selection in CompCert. As we have mechanized the IRs by making
them share a common base, the compiler passes between them can also enjoy reuse. We define a
base family CfamTransl that mechanizes the common, uninteresting transformations that have to
be performed by all passes between two IRs derived from Cfam. The passes Cminorgen and Selection

then reuse the transformations and proofs from CfamTransl, only making targeted refinements that
are concerned with the compilation of the distinctive features of the IRs. In addition to the sharing
between the two passes, each of Cminorgen and Selection is developed in a nanopass style using
traits.

Modular RISC-V modeling. The RISC-V ISA is designed to be modular [28]. We capitalize on
this modularity to mechanize the RISC-V syntax and semantics in a modular fashion. RISC-V offers
a base instruction set RV32I, and another RV64I that builds on RV32I. These instruction sets have
many extensions such as multiplication (M), floating-point operations (F, D), and vector processing
(V). Rocqet allows this modularity in the RISC-V design to be faithfully modeled in a proof assistant.
In the back end of our compiler framework, the RV32I and RV64I ISA base is modeled as concrete
families, with RV64I extending RV32I, while extensions such as D and M are realized as traits that
extend the base families. Thus, these extensions can be freely composed in a mix-and-match style.
Importantly, the composability allows a compiler extension to customize the combination of RISC-V
extensions it requires—a key motivation for the RISC-V initiative.

Extensions to the base compiler. The organization of the base compiler follows the reuse
strategies described thus far. Additional C features are mechanized as traits that extend the base
compiler family and, therefore, embody the same reuse principles.
(1) Structured loops are supported in a trait called Comp_Loops (Figure 3). This extension involves

extending the IRs in the front end of the compiler with high-level or mid-level loop constructs.
(2) Switch statements are supported by a trait that extends the compiler front end with switch

constructs and the back end with jump tables.
(3) Heap access is supported by a trait that extends the base compiler with heap operations. Heap

operations manifest as references and pointers in the compiler front end and are made explicit
via loads and stores in the back end.

(4) Structs and unions are supported by a trait that extends the base compiler with field access.
Fields can be from structures or unions but are represented by the same expression form. This
extension can either build on the heap extension or be independently developed. If developed
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Family Comp. … End Comp.

Trait Comp_Loops extends Comp. … End Comp_Loops.

Trait Comp_Switch extends Comp. … End Comp_Switch.

Trait Comp_Heap extends Comp. … End Comp_Heap.

Trait Comp_Field extends Comp. … End Comp_Field.

Trait Comp_External extends Comp. … End Comp_External.

Trait Comp_Builtin extends Comp. … End Comp_Builtin.

Trait Comp_Call extends Comp. … End Comp_Call.

Family CompCert extends Comp

using Comp_Loops, Comp_Switch, Comp_Builtin,

Comp_Heap, Comp_External, Comp_Field, Comp_Call.

End CompCert.

base
compiler

loops

CompCert
C

heap

switch

structs,
unions

function
calls

external
calls

built-in
calls

Figure 8. Rocqet enables à la carte composition of compiler extensions.

independently, it leads to a feature interaction when composed with the heap extension, as
fields can be lvalues, which require heap access.

(5) Function calls are supported in three extensions that extend the base compiler with calls
to built-in functions (e.g., ^__builtin_sel), external functions (e.g., malloc), and user-defined
functions.

These extensions can be composed with the base compiler to yield custom compilers that support
different combinations of C features. The ability to select a subset of these extensions is useful, for
example, in developing safety-critical applications for embedded systems, where it is not uncommon
that features like dynamic memory allocation and external function calls may be prohibited due to
resource constraints.

When all the extensions are combined, they recover a compiler for CompCert C (Figure 8). It is
possible to further extend this compiler with additional features beyond those in CompCert C; we
leave this as future work.

Experience report. Most of the effort in developing this extensible compiler framework was
spent on designing and engineering the base compiler. Once the base compiler was established,
building extensions became straightforward. The fact that each extension is a separate trait focusing
on a single feature eased development and coordination, allowing us to develop and verify each
extension independently.

The sharing among IRs and passes reduced code and proof complexity. For instance, in the
Comp_Loops extension, the IR modules Cminor, CminorSel, and Csharpminor share the same loop
construct, which means that the syntax and semantics of loops need to be mechanized only once
and, thus, that the Cminorgen and Selection passes only need to be refined with a single identity
transformation in this compiler extension. This simplification reduced engineering effort.

For porting many of the CompCert’s program transformations to the Rocqet syntax, an AI-
powered coding assistant like GitHub Copilot proved effective at handling mechanical conversion
tasks. The high success rate of this automated conversion is a potential indicator that the language
design of Rocqet allows a programming style familiar and intuitive to a working Rocq programmer.

7 Evaluation
Performance of proof compilation compared to FPOP. We evaluate the speedup in proof-
compilation time that Rocqet offers over FPOP. Our benchmarks are from the prime case study that
Jin et al. [27] conducted with their FPOP implementation. This case study concerns the type-safety
proofs of five extensions to the simply typed lambda calculus (𝜆): Booleans (B), products (×), sums
(+), term-level fixed points (Y), and iso-recursive types (𝜇). Both FPOP and Rocqet can express these
extensions as mixins (families in FPOP and traits in Rocqet) to a base STLC mechanization. These
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Figure 9. Proof-compilation times for different combinations of STLC extensions: FPOP vs. Rocqet.

Table 1. Proof-compilation times (in seconds) of CompCert modules.

SimplExpr Cshmgen Cminorgen Selection RTLgen Linearize Stacking Asmgen

Rocq 28.3 32.1 6.7 46.1 22.5 23.4 23.6 66.6
Rocqet 1680.0 267.9 209.3 128.4 512.4 97.1 242.0 159.8

extensions are picked and composed to yield a host of STLC variants and their type-safety proofs.
Proofs can be written in largely the same style as those in Software Foundations [49].

We measure the time taken for FPOP and Rocqet to compile different combinations of STLC
extensions (including the time taken to compile the base STLC mechanization). Figure 9 presents
the results.5 The x-axis shows the combinations we benchmarked, ordered by increasing number of
extensions. As the complexity of the benchmark increases, the time taken by FPOP rises substantially.
In contrast, Rocqet scales well: compilation time increases in proportion to the number of extensions
composed. When all five extensions coexist, Rocqet achieves a speedup of 81× over FPOP.

A key reason for this speedup is that Rocqet avoids the iterated self-parameter instantiation
(as in Figure 6) for each mixin, only doing it once for the entire composition. Proof-compilation
performance also benefits from Rocqet optimizations that reduce the number and size of generated
contexts, which are Rocq Module Types. These optimizations include reusing previously generated
contexts when possible and generating smaller contexts that contain only the necessary components
serving as extensibility hooks.

Performance of proof compilation compared to Rocq. While Rocqet significantly outperforms
FPOP in compilation times, its powerful extensibility mechanism inevitably introduces an overhead.
We evaluate the slowdown that Rocqet introduces over Rocq for compiling the CompCert modules.
Table 1 shows the results. For each module, the reported Rocqet time includes that for the base
compiler and all the extensions. An average slowdown of 10× (geometric mean) is observed. The
SimplExpr pass is a notable outlier, taking considerably more time. It imports a complex C semantics,
stressing memory and computation due to compilation into a large number of Rocq Modules—likely
in ways not anticipated by Rocq’s implementation for typical usage patterns. Despite the current
cost on proof compilation, we view this as an acceptable trade-off for gaining extensibility and
reuse at a very large scale. Improving proof-compilation performance remains future work.

Performance of extracted code. We extract an executable compiler from our port of CompCert
in Rocqet. We evaluate the performance of this compiler against the original CompCert, on Comp-
Cert’s default test suite. This suite encompasses a range of C programs, from basic algorithms to
complex applications. Table 2 shows the results. Each cell shows the total compilation time on all
test cases under a directory in the test suite.

5All measurements in Section 7 were taken on a machine with an AMD Ryzen 7 7700X (4.5 GHz) and 64 GB RAM.
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Table 2. Benchmark compilation times (in seconds) with the extracted compilers, on CompCert’s test suite.

raytracer regression compression c spass abi

Rocq 0.725 5.582 0.445 1.654 17.236 19.928
Rocqet 0.725 5.601 0.444 1.649 17.259 19.924

Table 3. Lines of code needed for building compiler extensions without and with Rocqet.

base +loops +switch +calls +builtin +external +heap +fields

Rocq 16 739 18 149 17 762 18 338 18 162 17 141 19 407 17 100
Rocqet 17 021 1 410 1 023 1 599 1 423 402 2 668 361

The measurements show that the extracted compiler has comparable performance to the original
CompCert. This finding is interesting, as it confirms the fusion of nanopasses in our extracted
compiler. The prior work on the nanopass framework does not support fusion, and it reports ~1.7×
longer compilation times compared to a non-nanopass compiler [30]. Our results suggest that the
extensibility and modularity afforded by Rocqet come at minimal performance cost.

Reuse. We evaluate the degree of reuse that Rocqet enables for developing compiler extensions.
Our primary metric is lines of code (LOC). Table 3 reports the results.

The “base” column compares the base compiler written in Rocqet to a stripped-down version
of CompCert in Rocq that includes only equivalent features. The remaining columns report the
code size for each compiler extension. Rocqet numbers are counted directly. Rocq numbers are
estimates—we did not implement in Rocq these stripped-down versions of CompCert, as doing so
would require substantial engineering effort without yielding new insights. We obtain the LOC
for the base compiler in Rocq by removing lemmas, induction cases, and other definitions not
present in the Rocqet version of the base compiler. To estimate the extra LOC needed for a compiler
extension, we use the LOC from Rocqet as a proxy. This proxy is a reasonable estimate, as the
Rocqet proofs in the compiler extensions are written following a similar style to CompCert.

The results confirm that Rocqet enables significant reuse. Once the base compiler is implemented,
writing a new compiler extension in Rocqet requires only the code and proofs specific to the
new feature; all other components are inherited from the base compiler and reused. In contrast,
extending the base compiler in Rocq requires duplicating code from the base compiler, which leads
to a substantial increase in code size and makes the codebase harder to maintain.

8 Related Work
Extensibility and compiler verification. There are two main approaches to compiler verification.

One approach aims at compilers that, in addition to compiled code, also produce a correctness
proof of the compiled code. Such compilers are known as certifying compilers or proof-producing
compilers. Rupicola [50] is a certifying compiler that casts verified compilation of Gallina programs
to C code as proof search. A design goal of Rupicola is extensibility. Rupicola is extensible in a
different sense than what we have discussed so far: in Rupicola, new translations can be added in the
form of lemmas, which are then used by the code-generating proof search. Relying on proof search
potentially limits scalability; it is reported that Rupicola compiles 2–15 statements per second.

Another approach to compiler verification aims at compilers that are proven correct. Such com-
pilers are known as certified compilers—two prime examples are CompCert [36] and CakeML [58].
Tatlock and Lerner [59] and Gross et al. [23] introduce frameworks that enable modularly extending
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a certified compiler with new optimizations in the form of rewrite rules. These frameworks are
orthogonal and complementary to our work.

Extensibility andmetatheorymechanization. Ourwork is more closely related to prior work on
extensible metatheory mechanization [11–13, 54, 31, 20, 27, 40], which is driven by a fundamental
tension between adding new constructors to an inductive type and adding new functions or
theorems that operate by induction over that type—an instance of the expression problem [61] in
the context of proof languages.

Existing solutions to the expression problem in this space are largely extralinguistic, in the sense
that they are code-organizing techniques. Much prior work [12, 13, 54, 31, 20] is inspired by the
data types à la carte (DTC) encoding technique [57]. Notably, the metatheory à la carte work [12]
uses Church encodings for data types, Mendler-style folds for evaluation, and type classes for
feature composition. Techniques based on encodings may lead to convoluted code, which makes
the programming style less accessible and idiomatic. Likely for this reason, their use has been
limited to smaller-scale developments than certified compilers.

In contrast, family polymorphism in FPOP and Rocqet is a language-design solution.Thus, it is to a
large degree not confined by the host proof language. By introducing new language features, Rocqet
allows a more idiomatic style of programming and proving—languages and their metatheories can
be mechanized in a way that aligns closely with textbook presentations. To our knowledge, our
work is the first to address the expression problem in the context of compiler verification, which
involves a broader set of challenges than metatheory mechanization.

Nested family polymorphism. A key reason for the scalability of our approach is that the name
of every nested component—ranging from small elements like inductive types and induction proofs
to larger structures like entire families and traits—is a potential hook for extending behavior.

This design draws inspiration from prior languages supporting nested family polymorphism
[43, 45, 62, 32] in standard OO or functional contexts. Rocqet is the first to support it in an interactive
theorem prover. Previous work on a Java-like language [42] reports performance overhead intro-
duced by a compilation scheme that uses wrapper objects to support nested family polymorphism.
The indirection introduced in Rocqet’s compilation scheme is mostly concerned with creating
fine-grained functions (e.g., cases of FRecursion), which does not seem to slow down extracted code
as our experiments suggest.

9 Conclusion
We have presented the design and implementation of Rocqet. It extends the Rocq prover with novel,
powerful language abstractions, offering a high degree of extensibility that may seem unusual
even for a standard object-oriented or functional language. We were guided in the design of Rocqet
by a real, important use case: the construction of verified compilers. The new expressive power
afforded by Rocqet allows the monolithic design of a verified compiler to be modularized into
reusable components, supporting flexible extension and à la carte composition of IRs, compiler
transformations, and entire compilers. Our experience suggests that the rich abstractionmechanisms
in Rocqet are practical and effective for structuring machine-checked proofs of large, complex
certified systems.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This work was supported in part
by the Natural Sciences and Engineering Research Council of Canada. Any opinions and findings
are those of the authors and do not necessarily reflect the position of any funders.



22 Oghenevwogaga Ebresafe, Ian Zhao, Ende Jin, Arthur Bright, Charles Jian, and Yizhou Zhang

Data-Availability Statement
The artifact accompanying this paper is archived on Zenodo [17]. The latest versions of Rocqet and
the Rocqet port of CompCert can be found at the following links:

Github https://github.com/rocqetry/rocqet
Github https://github.com/rocqetry/CompCert
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A Syntax and Semantic Models of FMLTT2.0

This appendix provides the metatheoretical details of FMLTT2.0, a dependent type core calculus
based on FMLTT [27]. Compared to FMLTT, FMLTT2.0 simplifies some typing rules and equips the
ability to encode nested inheritance.

In this appendix, we will use de Bruijn indices and explicit substitutions [1, 39]: substitutions 𝛾 and
their applications (e.g., 𝑇[𝛾], which applies 𝛾 to the type 𝑇) are part of the syntax rather than meta-
operations. However, we may use named binders for better readability. We work in an intrinsically
typed setting: terms are well typed by construction. Consequently, we omit without ambiguity
some obvious premises needed for well-formedness.

Our style of syntax formulation follows a recent trend [2, 8, 21, 56] known as the “algebraic
presentation” of MLTT. These works formulate the syntax using different tools or frameworks.
Altenkirch and Kaposi [2] use Quotient Inductive Inductive Type (QIIT), Coquand [8] uses category
with family (CwF), and Sterling [56] uses Generalized Algebraic Theory (GAT). Our formulation
can be considered to be based on QIIT. However, we will manually quotient upon the syntax along
judgmental equalities for the reader. The semantic model we develop in this appendix respects these
judgmental equalities by construction.

A.1 Review MLTT with Explicit Substitutions and Universe Levels
We review the base MLTT fragment of FMLTT2.0 first. Our formulation is close to that of Sterling
[56], except for that we are using a more conventional notation and that we use manual quotient
instead of GAT.

Contexts Γ, Δ, Θ ⋅ ∣ Γ, 𝐴
Substitutions 𝛾 p

𝑛 ∣ 𝛾 , 𝑡 ∣ 𝛾1 ∘ 𝛾2 ∣ 𝜋1𝛾 ∣ id
Types 𝐴, 𝐵, 𝑇 𝑇[𝛾] ∣ U ∣ B ∣ ⊥ ∣ ⊤ ∣ Π(𝐴, 𝐵) ∣ Σ(𝐴, 𝐵) ∣ Eq(𝑡1, 𝑡2) ∣ S(𝑡) ∣ El(𝑡)
Terms 𝑡 , 𝑠 𝑡[𝛾] ∣ var𝑛 ∣ 𝜋2𝛾 ∣ c(𝑇 ) ∣ () ∣ tt ∣ ff ∣ if(𝑡1, 𝑡2, 𝑡3) ∣ 𝜆(𝑡) ∣ app(𝑡) ∣

⟨𝑡1, 𝑡2⟩ ∣ fst 𝑡 ∣ snd 𝑡 ∣ refl(𝑡) ∣ J(𝑡1, 𝑡2)

Γ ⊢ Γ ⊢ 𝛾 ∶ Δ Γ ⊢𝑗 𝑇 Γ ⊢ 𝑡 ∶ 𝑇

⋅ ⊢
Γ ⊢ Γ ⊢𝑗 𝐴

Γ,𝐴 ⊢

𝑗 < 𝑘
Γ ⊢𝑘 U𝑗 Γ ⊢0 B Γ ⊢0 ⊥ Γ ⊢0 ⊤

Γ ⊢𝑗 𝐴 Γ,𝐴 ⊢𝑗 𝐵
Γ ⊢𝑗 Π(𝐴, 𝐵)

Γ ⊢𝑗 𝐴 Γ,𝐴 ⊢𝑗 𝐵
Γ ⊢𝑗 Σ(𝐴, 𝐵)

Γ ⊢𝑗 𝐴 Γ ⊢ 𝑥 ∶ 𝐴 Γ ⊢ 𝑦 ∶ 𝐴
Γ ⊢𝑗 Eq(𝑥, 𝑦)

Γ ⊢𝑗 𝐴 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢𝑗 S(𝑎)

[ty/sub]
Δ ⊢𝑗 𝑇 Γ ⊢ 𝛾 ∶ Δ

Γ ⊢𝑗 𝑇[𝛾]

Γ ⊢ 𝐴[p0] ≡ 𝐴 Γ ⊢ 𝐴[𝛾1 ∘ 𝛾2] ≡ 𝐴[𝛾1][𝛾2]

Γ ⊢ 𝛾 ∶ Δ
Γ ⊢ U[𝛾] ≡ U Γ ⊢ B[𝛾] ≡ B Γ ⊢ ⊥[𝛾] ≡ ⊥ Γ ⊢ (Π(𝐴, 𝐵))[𝛾] ≡ Π(𝐴[𝛾], 𝐵[𝛾 ↑])

Γ ⊢ (Σ(𝐴, 𝐵))[𝛾] ≡ Σ(𝐴[𝛾], 𝐵[𝛾 ↑]) Γ ⊢ (Eq(𝑎, 𝑏))[𝛾] ≡ Eq(𝑎[𝛾], 𝑏[𝛾]) Γ ⊢ S(𝑎)[𝛾] ≡ S(𝑎[𝛾])
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𝑎 < 𝑏 ∶ N Γ ⊢𝑎 𝐴
Γ ⊢𝑏 ⇑𝑏𝑎 𝐴

[tm/LiftEq]
Γ ⊢ 𝑡 ∶ 𝐴 ⇔ Γ ⊢ 𝑡 ∶ ⇑𝑏𝑎 𝐴

[con/ty/LiftEq]
Γ, ⇑𝑏𝑎 𝐴 ⊢ ⇔ Γ,𝐴 ⊢

Γ ⊢ ⇑𝑏𝑎 𝐴[𝛾] ≡ ⇑𝑏𝑎 𝐴[𝛾] Γ ⊢ ⇑𝑐𝑏 ⇑
𝑏
𝑎 𝐴 ≡ ⇑𝑐𝑎 𝐴 (Γ, ⇑𝑏𝑎 𝐴) ≡ (Γ, 𝐴) ⊢

𝑚 < 𝑎
Γ ⊢𝑏 ⇑𝑏𝑎 U𝑚 ≡ U𝑚 Γ ⊢ ⇑𝑏𝑎 Π(𝐴, 𝐵) ≡ Π(⇑𝑏𝑎 𝐴, ⇑𝑏𝑎 𝐵) Γ ⊢ ⇑𝑏𝑎 Σ(𝐴, 𝐵) ≡ Σ(⇑𝑏𝑎 𝐴, ⇑𝑏𝑎 𝐵)

Γ ⊢ ⇑𝑏𝑎 Eq(𝑥, 𝑦) ≡ Eq(𝑥, 𝑦) Γ ⊢ ⇑𝑏𝑎 S(𝑥) ≡ S(𝑥)

[tm/code]
Γ ⊢𝑗 𝑇

Γ ⊢ c(𝑇 ) ∶ U𝑗
Γ ⊢ 𝑇 ∶ U𝑗

Γ ⊢𝑗 El(𝑇 ) Γ ⊢ El(c(𝑇 )) ≡ 𝑇 Γ ⊢ c(El(𝑇 )) ≡ 𝑇 ∶ U Γ ⊢ () ∶ ⊤

Γ ⊢ 𝑡 ∶ ⊤
Γ ⊢ 𝑡 ≡ () ∶ ⊤

[tm/sub]
Δ ⊢ 𝑡 ∶ 𝑇 Γ ⊢ 𝛾 ∶ Δ

Γ ⊢ 𝑡[𝛾] ∶ 𝑇[𝛾]
Γ ⊢ 𝑡[p0] ≡ 𝑡 ∶ 𝑇

Γ, 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆(𝑡) ∶ Π(𝐴, 𝐵)

Γ ⊢ 𝑡 ∶ Π(𝐴, 𝐵)
Γ, 𝐴 ⊢ app(𝑡) ∶ 𝐵 Γ, 𝐴 ⊢ app(𝜆(𝑡)) ≡ 𝑡 ∶ 𝐵 Γ ⊢ 𝜆(app(𝑡)) ≡ 𝑡 ∶ Π(𝐴, 𝐵)

Γ ⊢ 𝑢 ∶ 𝐴 Γ ⊢ 𝑣 ∶ 𝐵[(p0, 𝑢)]
Γ ⊢ (𝑢, 𝑣) ∶ Σ(𝐴, 𝐵)

[tm/pair/proj]
Γ ⊢ 𝑡 ∶ Σ(𝐴, 𝐵)

Γ ⊢ fst 𝑡 ∶ 𝐴 Γ ⊢ snd 𝑡 ∶ 𝐵[(p0, fst 𝑡)]

Γ ⊢ fst ⟨𝑢, 𝑣⟩ ≡ 𝑢 ∶ 𝐴 Γ ⊢ snd ⟨𝑢, 𝑣⟩ ≡ 𝑣 ∶ 𝐵[(p0, 𝑢)] Γ ⊢ ⟨fst 𝑡, snd 𝑡⟩ ≡ 𝑡 ∶ Σ(𝐴, 𝐵)

Γ ⊢ tt, ff ∶ B

Γ ⊢ 𝑐 ∶ B Γ ⊢ 𝑎 ∶ 𝑇 Γ ⊢ 𝑏 ∶ 𝑇
Γ ⊢ if(𝑐, 𝑎, 𝑏) ∶ 𝑇

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ refl(𝑎) ∶ Eq(𝑎, 𝑎)

Γ ⊢ 𝑢 ∶ 𝐴 Γ,𝐴, Eq(𝑢[𝜋1], 𝜋2) ⊢ 𝐶 Γ ⊢ 𝑤 ∶ 𝐶[p0, 𝑢, refl(𝑢)] Γ ⊢ 𝑣 ∶ 𝐴 Γ ⊢ 𝑡 ∶ Eq(𝑢, 𝑣)
Γ ⊢ J(𝑤, 𝑡) ∶ 𝐶[p0, 𝑣, 𝑡]

Γ ⊢ if(tt, 𝑎, 𝑏) ≡ 𝑎 ∶ 𝑇 Γ ⊢ if(ff, 𝑎, 𝑏) ≡ 𝑏 ∶ 𝑇 Γ ⊢ J(𝑤, refl(𝑢)) ≡ 𝑤 ∶ 𝐶[p0, 𝑢, refl(𝑢)]

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ ⋆ ∶ S(𝑎)

Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑥 ∶ S(𝑎)
Γ ⊢ 𝑥 ≡ 𝑎 ∶ 𝐴

Γ ⊢ (𝜆(𝑡))[𝛾] ≡ 𝜆(𝑡[𝛾 ↑]) ∶ Π(𝐴, 𝐵) Γ ⊢ (𝑢, 𝑣)[𝛾] ≡ (𝑢[𝛾] , 𝑣[𝛾]) ∶ Σ(𝐴, 𝐵)
Γ ⊢ El(𝑇[𝛾]) ≡ (El(𝑇 ))[𝛾] Γ ⊢ tt[𝛾] ≡ tt ∶ B Γ ⊢ ff[𝛾] ≡ ff ∶ B

Γ ⊢ (if(𝑐, 𝑎, 𝑏))[𝛾] ≡ if(𝑐[𝛾], 𝑎[𝛾], 𝑏[𝛾]) ∶ 𝑇 Γ ⊢ (J(𝑤, 𝑡))[𝛾] ≡ J(𝑤[𝛾], 𝑡[𝛾]) ∶

Γ ⊢ 𝜖 ∶ ⋅
Γ ⊢ 𝛾 ∶ ⋅

Γ ⊢ 𝛾 ≡ 𝜖 ∶ ⋅
Δ ⊢ 𝛿 ∶ Θ Γ ⊢ 𝛾 ∶ Δ

Γ ⊢ 𝛿 ∘ 𝛾 ∶ Θ Γ ⊢ id ≡ p
0 ∶ Γ
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[sub/id]

Γ ⊢ p
0 ∶ Γ

[sub/ext]
Γ ⊢ 𝛾 ∶ Δ Γ ⊢ 𝑡 ∶ 𝐴[𝛾]

Γ ⊢ 𝛾 , 𝑡 ∶ (Δ,𝐴)

[sub/wk]
Γ ⊢ p

𝑛 ∶ Δ Γ ⊢ 𝐴
Γ,𝐴 ⊢ p

𝑛+1 ∶ Δ

[tm/var]
Γ, 𝐴𝑛, ..., 𝐴1, 𝐴0 ⊢

Γ,𝐴𝑛, ..., 𝐴1, 𝐴0 ⊢ var𝑛 ∶ 𝐴𝑛[p𝑛+1]

[sub/dbj/shift]
Γ ⊢ 𝛾 ∶ Δ Δ ⊢ 𝐴

Γ,𝐴[𝛾] ⊢ 𝛾 ↑𝐴 ≡ (𝛾 ∘ p1, var0) ∶ Δ,𝐴

Γ ⊢ 𝛾 ∶ (Δ,𝐴)
Γ ⊢ 𝜋1𝛾 ∶ Δ

Γ ⊢ 𝛾 ∶ (Δ,𝐴)
Γ ⊢ 𝜋2𝛾 ∶ 𝐴[𝜋1𝛾] Γ ⊢ (𝜋1𝛾 , 𝜋2𝛾 ) ≡ 𝛾 ∶ Δ

Γ ⊢ 𝛾1 ∘ (𝛾2 ∘ 𝛾3) ≡ (𝛾1 ∘ 𝛾2) ∘ 𝛾3 ∶ Θ Γ ⊢ p
0 ∘ 𝛾 ≡ 𝛾 ∘ p0 ≡ 𝛾 ∶ Θ

Variable using De Bruijn Indices and Explicit Substitution. de Bruijn indices and explicit
substitutions make details about binders and substitutions clear. Using explicit substitutions obviates
the need for special treatment of substitutions in the meta-theoretical proofs, as substitutions are
part of the syntax. The form var𝑛 represents a variable bound by the 𝑛-th closest enclosing binder.
For example, 𝜆𝑥. 𝜆𝑦. 𝑥 is 𝜆(𝜆(var1)). Substitutions are typed with the form Γ ⊢ 𝛾 ∶ Δ. The idea
is that applying 𝛾 to terms valid in the context Δ yields terms valid in Γ ([tm/sub] and [ty/sub]).
The two main forms of substitutions are weakening ([sub/wk]) and extension ([sub/ext]): 𝑡[p𝑛]
introduces 𝑛 free variables into the context of 𝑡, and 𝑡[𝛾 , 𝑡′] substitutes 𝑡′ for var0 in 𝑡 and then
applies 𝛾. For example, rule [tm/pair/proj] states that if 𝑡 is a dependent pair that has type Σ(𝐴, 𝐵),
then snd 𝑡 has type 𝐵[p0, fst 𝑡], where p

0 is the identity substitution ([sub/id]). We occasionally
use the notation id for p0.

To simplify, p𝑛 is a short hand for 𝜋𝑛
1 id and var𝑛 is a short hand for 𝜋2 𝜋𝑛

1 . Thus during meta-
theoretic reasoning, we will only deal with 𝜋1 and 𝜋2.

Consequently, function application changes to an equivalent formulation, and becomes a “direct
inverse” of typing rule for function abstraction. For example, the named notation app(𝑓 , 𝑡) can be
equivalently represented by app(𝑓 )[p0, 𝑡].

Finally, we have [sub/dbj/shift] defined using [sub/wk] and [tm/var]. This rule applying
substitution 𝛾 to the earlier portion of the context. We usually omit 𝐴 in the 𝛾 ↑𝐴 because it can be
inferred from the context.

Judgmental Equality instead of Operational Semantics. Conventional PL formulation usually
relies on operational semantics to specify the execution of programs. However, in this MLTT
formulation [8, 56, 2], we use judgmental equalities between two derivations to represent such
execution.

The reason for such alternation is the existence of dependent type — especially when we want
to consider type 𝑀(1 + 0) ≡ 𝑀(1) since 1 + 0 ≡ 1 in arithmetic. If we use operational semantic,
then 1 + 0 and 1 are considered different syntax objects and we need extra handling/rules to
convert between terms of (different) types 𝑀(1 + 0) and 𝑀(1). The easiest solution is to introduce
judgmental equality and thus quotiented syntax. And thus 1+0 and 1 are consider the “same” syntax
(under the quotient along judgmental equalities) so we have 𝑀(1+ 0) ≡ 𝑀(0) also the same syntax
object under the quotient along judgmental equalities.

Using judgmental equalities to express computational information does raise some concerns (†):
(1) Shifting from operational semantics urges us to find an alternative notion of type safety.

For example, type safety claims closed boolean terms reduce to values (e.g. tt and ff) upon
termination, proving that we have a complete set of reduction rules.
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Comparably, what notion do we need to prove to show that we have enough judgmental
equalities?

(2) Equality is a bidirectional notion, so the execution model is unclear.

We will resolve both concerns after constructing the canonicity model.

Type Connectives. The fundamental two connectives in dependent type theory are dependent
functions Π(⋅, ⋅) and dependent pairs Σ(⋅, ⋅). We also have identity types Eq(𝑥, 𝑦) to express, at type
level, that term 𝑥, 𝑦 are equal. The elimination principle is the standard J-rule J(⋅, ⋅) [60, §1.12].
Moreover, we have singleton type S(𝑎) with a unique inhabitant, and a boolean type B with no
eliminator.

Universe levels. A (code of a) type has type U. For example, Γ ⊢ c(⊤) ∶ U, which makes U another
type.

However, it is unsound to say Γ ⊢ c(U) ∶ U, and it is also generally unsound to say that we have
a set of all sets (or a universe of all types) [26].

But it is sound to say, we have a large type U0 classifying all the small types, and U1 classifying
all the large types (e.g. U0 and Π(U0,U0)), and etc, to consititue an infinite hierachy of universes
U0 ∶ U1 ∶ U2....

This index is universe level, which is a natural number used to address the forementioned size
issue. The level of a universe specifies “how large” that universe is. It is used in both type judgment
Γ ⊢𝑖 𝑇 and universe index U𝑖. The judgment form Γ ⊢𝑖 𝑇 indicates that (the code of) the type 𝑇
inhabits universe U𝑖. (i.e. [tm/code]).

All the type connectives (e.g. Π(, ) and Σ(, )) will work on types of the same level. Following
Sterling [56], we also introduce explicit universe lifting about the type ⇑𝑏𝑎 𝐴 to connect types
of different level, which makes the infinite hierachy also cumulative (i.e. ⊢ 𝑇 ∶ U𝑖 implies
⊢ ⇑𝑖+1𝑖 𝑇 ∶ U𝑖+1, and they have same term as inhabitants [tm/LiftEq]).

Equalities on judgments. With universe lifting, we have one special equality about judgments,
adopted from Sterling [56, §4.1]. It is saying that the terms of lifted type is the same as the unlifted
(i.e. [tm/LiftEq]). Compared to other rule, this rules is special as it is an equality between two
judgments, while rest of the equalities are all about equalities between derivations.

This rule can be easily formulated in GAT as sort equalties [56, §4.1]. Here we show how to
formulate it in QIIT by slightly altering the Agda formulation from Altenkirch and Kaposi [2].

data Sort : Set where

data | _ | : Sort → Set where

Con' : Sort

Ty' : | Con' | → Nat → Sort -- Nat is universe level

Tms' : | Con' | → | Con' | → Sort

Tm' : (Γ : | Con' |) → | Ty' Γ i | → Sort

-- introduce the lifting and the tm/LiftEq

⇑ : (i : Nat) → (j : Nat) → | Ty' Γ i | → | Ty' Γ j |

⇑tmLiftEq : Tm' Γ (⇑ i j T) ≡ Tm' Γ T

-- an equality between the term of type ”Sort”

-- From here, we re-introduce Con, Ty, Tm and Tms

Con : Set

Con = | Con' |

Ty : Con → Nat → Set

Ty Γ j = | Ty' Γ j |
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Tms : Con → Con → Set

Tms Γ Δ = | Tms' Γ Δ |

Tm : (Γ : Con) → Ty Γ j → Set

≡ (Γ : | Con' |) → | Ty' Γ j | → Set

Tm Γ T = | Tm' Γ T |

-- Con, Ty, Tm and Tms has exactly the same signature as in

-- (Altenkirch and Kaposi, 2016)

-- so the rest of the rules in (Altenkirch and Kaposi, 2016) can

-- be put here to recover the syntax

This encoding works by making the judgment into another derivation on judgment Sort. Once
they are derivations, we can pose equalties on them. After encoding this synatx rule in QIIT, we are
confident about the validity of our syntax rule and we can use the elimination principle of QIIT [2]
to reason about our manually-quotiented syntax.

A.2 FMLTT2.0 based on MLTT
FMLTT2.0 extends the MLTT in Section A.1 with linkage signatures, linkages, linkage transformers,
W-type signatures and W-types.

Types 𝐴, 𝐵, 𝑇 ... ∣ w𝜋 𝑖
1(𝜏 ) ∣ w𝜋 𝑖

2(𝜏 ) ∣ L(𝜎) ∣ 𝜈𝜋2(𝜎) ∣ CaseTy(𝐴, 𝐵, 𝑇 ) ∣ L+(𝜎)
Terms 𝑡 , 𝑠, ℓ ... ∣ W(𝜏 ) ∣ Wsup𝑖(𝜏 , 𝑡1, 𝑡2) ∣ 𝜇

• ∣ 𝜇+(ℓ, 𝑡) ∣ inh(ℎ, ℓ) ∣
Wrec(𝜏 , ℓ, 𝑡) ∣ 𝜇𝜋1(ℓ) ∣ 𝜇𝜋2(ℓ) ∣ R𝜋 𝑖(ℓ) ∣ iL+(𝑛, 𝜎 , ℎ, ℓ) ∣ eL+(ℓ)

Contextual Nat 𝑛 0 ∣ 𝑛 + 1 ∣ ℓ.size
Linkage signatures 𝜎 𝜈 • ∣ 𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ) ∣ 𝜈𝜋1(𝜎) ∣ RecSig(𝜏 , 𝑇 ) ∣ 𝜎[𝛾] ∣ ℓ.sig

Linkage transformers ℎ I
Id ∣ I Ext(ℎ, 𝑡) ∣ I Ov1(ℎ, 𝑡) ∣ I Inherit(ℎ) ∣
I
Nest(ℎ, ℎ′, 𝑝) ∣ ℎ[𝛾] ∣ ℓ.inh ∣ ℎ ∘ ℎ′

Mixin h ℎ ⊕⟩ ℎ′
W-type signatures 𝜏 w

• ∣ w+(𝜏 , 𝐴, 𝐵) ∣ 𝜏[𝛾] ∣ w−(𝜏 )

Γ ⊢ 𝑛 Nat Γ ⊢𝑙 𝜎 LSig
𝑛 Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 ProjWk 𝐴2 𝐴1 ↾ Γ ⊢𝑚 𝜏 WSig

𝑁

h ∈ { (𝜎4, ℎ3, ℎ4) | Γ ⊢ 𝜎4 LSig, Γ ⊢ ℎ3 ∶ 𝜎2 ↠ 𝜎4, Γ ⊢ ℎ4 ∶ 𝜎3 ↠ 𝜎4 }

[wsig/empty]

Γ ⊢𝑚 w
•
WSig

0 Γ ⊢𝑚 𝜏 WSig
0

Γ ⊢𝑚 𝜏 ≡ w
•
WSig

0

[wsig/add]
Γ ⊢𝑚 𝜏 WSig

𝑁 Γ ⊢𝑚 𝐴 Γ,𝐴 ⊢𝑚 𝐵
Γ ⊢𝑚 w

+(𝜏 , 𝐴, 𝐵) WSig
𝑁+1

Γ ⊢𝑚 𝜏 WSig
𝑁 𝐽 < 𝑁

Γ ⊢𝑚 w𝜋 𝐽
1 (𝜏 ) Γ, w𝜋 𝐽

1 (𝜏 ) ⊢𝑚 w𝜋 𝐽
2 (𝜏 )

Γ ⊢ 𝛾 ∶ Θ
Γ ⊢ w𝜋 𝐽+1

1 (w+(𝜏 , 𝐴, 𝐵)) ≡ w𝜋 𝐽
1 (𝜏 ) Γ, w𝜋 𝐽+1

1 (w+(𝜏 , 𝐴, 𝐵)) ⊢ w𝜋 𝐽+1
2 (w+(𝜏 , 𝐴, 𝐵)) ≡ w𝜋 𝐽

2 (𝜏 )
Γ ⊢ w𝜋0

1 (w+(𝜏 , 𝐴, 𝐵)) ≡ 𝐴 Γ, w𝜋0
1 (w+(𝜏 , 𝐴, 𝐵)) ⊢ w𝜋 𝐽

2 (w+(𝜏 , 𝐴, 𝐵)) ≡ 𝐵

Γ ⊢𝑚 𝜏 WSig
𝑁+1

Γ ⊢𝑚 w
−(𝜏 ) WSig

𝑁
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Γ ⊢ 𝛾 ∶ Θ
Γ ⊢ w

•[𝛾] ≡ w
•
WSig

0 Γ ⊢ w
+(𝜏 , 𝐴, 𝐵)[𝛾] ≡ w

+(𝜏[𝛾], 𝐴[𝛾], 𝐵[𝛾 ↑]) WSig
𝑁+1

Γ ⊢ w𝜋 𝐽
1 (𝜏 )[𝛾] ≡ w𝜋 𝐽

1 (𝜏[𝛾]) Γ, w𝜋 𝐽
1 (𝜏[𝛾]) ⊢𝑖 w𝜋

𝐽
2 (𝜏 )[𝛾 ↑] ≡ w𝜋 𝐽

2 (𝜏[𝛾])

Γ ⊢𝑚 𝜏 WSig
𝑁

Γ ⊢ W(𝜏 ) ∶ U𝑚+1

Γ ⊢𝑚 𝜏 WSig
𝑁 Γ ⊢ 𝑡1 ∶ w𝜋 𝐼

1(𝜏 )
Γ, w𝜋 𝐼

2(𝜏 )[p0, 𝑡1] ⊢ 𝑡2 ∶ El(W(𝜏 ))
Γ ⊢ Wsup𝐼(𝜏 , 𝑡1, 𝑡2) ∶ El(W(𝜏 ))

Γ ⊢ 𝛾 ∶ Θ
Γ ⊢ (Wsup(𝑇 , 𝑎, 𝑏))[𝛾] ≡ Wsup(𝑇[𝛾], 𝑎[𝛾], 𝑏[𝛾 ↑]) ∶ El((W(𝜏[𝛾])))

Γ ⊢𝑚 𝜏 WSig
𝑁 Γ ⊢𝑚 𝐴 Γ,𝐴 ⊢𝑚 𝐵

Γ ⊢ w
−(w+(𝜏 , 𝐴, 𝐵)) ≡ 𝜏 WSig

𝑁
Γ ⊢ 𝛾 ∶ Θ

Γ ⊢ w
−(𝜏 )[𝛾] ≡ w

−(𝜏[𝛾]) WSig
𝑁

Γ ⊢𝑙 𝑤 WSig
𝑁 𝑙 < 𝑙′

Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝑤 WSig

𝑁

Γ ⊢ ⇑𝑙′𝑙 w
+(𝜏 , 𝐴, 𝐵) ≡ w

+(⇑𝑙′𝑙 𝜏, ⇑𝑙′𝑙 𝐴, ⇑𝑙′𝑙 𝐵) WSig
𝑁 Γ ⊢ w

−(⇑𝑙′𝑙 𝜏) ≡ ⇑𝑙′𝑙 w
−(𝜏 ) WSig

𝑁

Γ ⊢𝑚 w𝜋 𝐽
1 (⇑𝑙

′
𝑙 𝜏) ≡ ⇑𝑙′𝑙 w𝜋 𝐽

1 (𝜏 ) Γ, w𝜋 𝐽
1 (⇑𝑙

′
𝑙 𝜏) ⊢𝑚 w𝜋 𝐽

2 (⇑𝑙
′
𝑙 𝜏) ≡ ⇑𝑙′𝑙 w𝜋 𝐽

2 (𝜏 )

Γ ⊢ 0 Nat
Γ ⊢ 𝑛 Nat

Γ ⊢ 𝑛 + 1 Nat

Δ ⊢ 𝑛 Nat Γ ⊢ 𝛾 ∶ Δ
Γ ⊢ 𝑛[𝛾] Nat Γ ⊢ 0[𝛾] ≡ 0 Nat Γ ⊢ 𝑛 + 1[𝛾] ≡ 𝑛[𝛾] + 1 Nat

Γ ⊢𝑙 𝜎 LSig
𝑛

Γ ⊢𝑙 L(𝜎)

Δ ⊢𝑙 𝜎 LSig
𝑛 Γ ⊢ 𝛾 ∶ Δ

Γ ⊢𝑙 𝜎[𝛾] LSig
𝑛 Γ ⊢ L(𝜎[𝛾]) ≡ (L(𝜎))[𝛾]

Γ ⊢𝑙 𝜈 • LSig
0

Γ ⊢𝑙 𝜎 LSig
0

Γ ⊢𝑙 𝜎 ≡ 𝜈 • LSig
0

[lsig/add]
Γ ⊢𝑙 𝜎 LSig

𝑛 Γ, 𝐴 ⊢𝑙 𝑇
Γ ⊢𝑙 𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ) LSig

𝑛+1

[lsig/proj]
Θ ⊢𝑙 𝜎 LSig

𝑛+1 Γ ⊢ 𝛾 ∶ Θ
Γ ⊢𝑙 𝜈𝜋1(𝜎) LSig

𝑛 Γ ⊢𝑙 𝜈𝜋 ′
1(𝜎) Γ, 𝜈𝜋 ′

1(𝜎) ⊢𝑙 𝜈𝜋2(𝜎)
Γ ⊢ 𝜈+(𝜈𝜋1(𝜎); 𝜈𝜋 ′

1(𝜎) ⊢ 𝜈𝜋2(𝜎)) ≡ 𝜎 LSig
𝑛+1

Γ ⊢ 𝜎 LSig
𝑛 Γ ⊢ 𝐴 Γ,𝐴 ⊢𝑖 𝑇

Γ ⊢ 𝜈𝜋1(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 )) ≡ 𝜎 LSig
𝑛 Γ ⊢ 𝜈𝜋 ′

1(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 )) ≡ 𝐴
Γ,𝐴 ⊢ 𝜈𝜋2(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 )) ≡ 𝑇
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Γ ⊢ 𝛾 LSig
Θ

Γ ⊢ 𝜈 •[𝛾] ≡ 𝜈 • LSig
𝑛 Γ ⊢ (𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ))[𝛾] ≡ 𝜈+(𝜎[𝛾]; 𝐴[𝛾] ⊢ 𝑇[𝛾 ↑]) LSig

𝑛+1

Γ ⊢ (𝜈𝜋1(𝜎))[𝛾] ≡ 𝜈𝜋1(𝜎[𝛾]) LSig
𝑛 Γ ⊢ (𝜈𝜋 ′

1(𝜎))[𝛾] ≡ 𝜈𝜋 ′
1(𝜎[𝛾])

Γ, 𝜈𝜋 ′
1(𝜎[𝛾]) ⊢ (𝜈𝜋2(𝜎))[𝛾 ↑] ≡ 𝜈𝜋2(𝜎[𝛾])

Γ ⊢𝑙 𝜎 LSig
𝑁 𝑙 < 𝑙′

Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝜎 LSig

𝑛

Γ ⊢ ⇑𝑙′𝑙 L(𝜎) ≡ L(⇑𝑙′𝑙 𝜎) Γ ⊢ ⇑𝑙′+1𝑙+1 L+(𝜎) ≡ L+(⇑𝑙′𝑙 𝜎) Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝜈 • ≡ 𝜈 • LSig

0

Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ) ≡ 𝜈+(⇑𝑙′𝑙 𝜎; ⇑𝑙′𝑙 𝐴 ⊢ ⇑𝑙′𝑙 𝑇) LSig

0 Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝜈𝜋1(𝜎) ≡ 𝜈𝜋1(⇑𝑙

′
𝑙 𝜎) LSig

𝑛

Γ ⊢𝑙′ ⇑𝑙
′
𝑙 𝜈𝜋 ′

1(𝜎) ≡ 𝜈𝜋 ′
1(⇑𝑙

′
𝑙 𝜎) Γ, ⇑𝑙′𝑙 𝜈𝜋 ′

1(𝜎) ⊢𝑙 ⇑𝑙
′
𝑙 𝜈𝜋2(𝜎) ≡ 𝜈𝜋2(⇑𝑙

′
𝑙 𝜎)

Γ ⊢ 𝜇• ∶ L(𝜈 •)
Γ ⊢ ℓ ∶ L(𝜈 •)

Γ ⊢ ℓ ≡ 𝜇• ∶ L(𝜈 •)

[l/add]
Γ ⊢ ℓ ∶ L(𝜎) Γ, 𝐴 ⊢ 𝑡 ∶ 𝑇

Γ ⊢ 𝜇+(ℓ, 𝑡) ∶ L(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ))

Γ ⊢ ℓ ∶ L(𝜎)
Γ ⊢ 𝜇+(𝜇𝜋1(ℓ), 𝜇𝜋2(ℓ)) ≡ ℓ ∶ L(𝜎)

[l/proj]
Γ ⊢ ℓ ∶ L(𝜎)

Γ ⊢ 𝜇𝜋1(ℓ) ∶ L(𝜈𝜋1(𝜎)) Γ, 𝜈𝜋 ′
1(𝜎) ⊢ 𝜇𝜋2(ℓ) ∶ 𝜈𝜋2(𝜎)

Γ ⊢ ℓ ∶ L(𝜎) Γ ⊢ 𝐴 Γ,𝐴 ⊢ 𝑡 ∶ 𝑇
Γ ⊢ 𝜇𝜋1(𝜇+(ℓ, 𝑡)) ≡ ℓ ∶ L(𝜎) Γ, 𝐴 ⊢ 𝜇𝜋2(𝜇+(ℓ, 𝑡)) ≡ 𝑡 ∶ 𝑇

Γ ⊢ 𝛾 ∶ Θ
Γ ⊢ 𝜇•[𝛾] ≡ 𝜇• ∶ L(𝜈 •) Γ ⊢ (𝜇+(ℓ, 𝑡))[𝛾] ≡ 𝜇+(ℓ[𝛾], 𝑡[𝛾 ↑]) ∶ L(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ))[𝛾]

Γ ⊢ (𝜇𝜋1(ℓ))[𝛾] ≡ 𝜇𝜋1(ℓ[𝛾]) ∶ L(𝜈𝜋1(𝜎))[𝛾] Γ, 𝜈𝜋 ′
1(𝜎[𝛾]) ⊢ (𝜇𝜋2(ℓ))[𝛾 ↑] ≡ 𝜇𝜋2(ℓ[𝛾]) ∶ 𝜈𝜋2(𝜎)

[tyeq/casety]
Γ ⊢𝑖 𝐴 Γ,𝐴 ⊢𝑖 𝐵 Γ ⊢𝑗 𝑇

Γ ⊢𝑖⊔𝑗 CaseTy(𝐴, 𝐵, 𝑅) ≡ Π(𝐴,Π(Π(𝐵, 𝑅[p2]), 𝑅[p2]))

Γ ⊢𝑚 𝜏 WSig
𝑁+1 Γ ⊢𝑗 𝑅

Γ ⊢𝑚∪𝑗 RecSig(𝜏 , 𝑅) ≡ 𝜈+(RecSig(w−(𝜏 ), 𝑅); 𝜋2 ⊢ CaseTy(w𝜋0
1 (𝜏 ), w𝜋0

2 (𝜏 ), 𝑅)) LSig
𝑛+1

Γ ⊢𝑚 𝜏 WSig
0 Γ ⊢𝑗 𝑅

Γ ⊢𝑚∪𝑗 RecSig(𝜏 , 𝑅) ≡ 𝜈 • LSig
0

Γ ⊢ 𝜏 WSig
𝑁 Γ ⊢ ℓ ∶ L(RecSig(𝜏 , 𝑅)) 𝑗 < 𝑁

Γ ⊢ R𝜋 𝑗(ℓ) ∶ (CaseTy(w𝜋 𝑗
1(𝜏 ), w𝜋

𝑗
2(𝜏 ), 𝑅))[𝜋1]
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[tm/wrec]
Γ ⊢ ℓ ∶ L(RecSig(𝜏 , 𝑇 )) Γ ⊢ 𝑡 ∶ El(W(𝜏 ))

Γ ⊢ Wrec(𝜏 , ℓ, 𝑡) ∶ 𝑇

Γ ⊢ 𝜏 WSig
𝑁 𝑗 < 𝑁 Γ ⊢ ℓ ∶ L(RecSig(𝜏 , 𝑅))

Γ ⊢ R𝜋 𝑗(ℓ) ∶ CaseTy(w𝜋 𝑗
1(𝜏 ), w𝜋

𝑗
2(𝜏 ), 𝑅)

Γ ⊢ R𝜋𝑛+1(ℓ) ≡ R𝜋𝑛(𝜇𝜋1(ℓ)) ∶ (CaseTy(w𝜋𝑛+1
1 (𝜏 ), w𝜋𝑛+1

2 (𝜏 ), 𝑅))[𝜋1]

Γ ⊢ R𝜋0(ℓ) ≡ 𝜇𝜋2(ℓ)[(p0,p(𝜇𝜋1(ℓ)))] ∶ (CaseTy(w𝜋0
1 (𝜏 ), w𝜋0

2 (𝜏 ), 𝑅))[𝜋1]

Γ ⊢ ℎ ∶ L(RecSig(𝜏 , 𝑅))
Γ ⊢ Wrec(𝜏 , ℎ, Wsup𝑗(𝜏 , 𝑎, 𝑏)) ≡ app(app(R𝜋 𝑗(ℎ))[(p0, 𝑎)])[(p0, 𝜆(Wrec(𝜏 , ℎ[𝜋1], 𝑏)))] ∶ 𝑅

[PJWK/formation]
Γ ⊢ 𝐴2 Γ ⊢ 𝐴1 Γ, 𝐴2 ⊢ 𝑓 ∶ 𝐴1[p1]

ProjWk 𝐴2 𝐴1 𝑓 ≅
{(𝑀, 𝑓1, 𝑓2) | Γ, 𝐴1 ⊢ 𝑀, Γ, Σ(𝐴1, 𝑀) ⊢ 𝑓1 ∶ 𝐴2[p1], Γ, 𝐴2 ⊢ 𝑓2 ∶ Σ(𝐴1, 𝑀)[p1],

𝑓2[p1, 𝑓1] ≡ var1 𝑓1[p1, 𝑓2] ≡ var1 𝑓 ≡ fst var1[p1, 𝑓2] }

Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℓ ∶ L(𝜎1)
Γ ⊢ inh(ℎ, ℓ) ∶ L(𝜎2)

Γ ⊢ inh(ℎ, ℓ)[𝛾] ≡ inh(ℎ[𝛾], ℓ[𝛾]) ∶ ..

Γ ⊢ I
Id ∶ 𝜎 ↠ 𝜎 Γ ⊢ I

Id[𝛾] ≡ I
Id Γ ⊢ inh(I Id, 𝑚) ≡ 𝑚 ∶ ..

Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ, 𝐴2 ⊢ 𝑡 ∶ 𝑇
Γ ⊢ I

Ext(ℎ, 𝑡) ∶ 𝜎1 ↠ (𝜈+(𝜎2; 𝑠2 ⊢ 𝑇))

Γ ⊢ I
Ext(ℎ, 𝑡)[𝛾] ≡ I

Ext(ℎ[𝛾], 𝑡[𝛾 ↑]) Γ ⊢ inh(I Ext(ℎ, 𝑡), ℓ) ≡ 𝜇+(inh(ℎ, ℓ), 𝑡) ∶ ..

Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ, 𝐴 ⊢ 𝑇
Γ ⊢ I

Inherit(ℎ) ∶ 𝜈+(𝜎1; 𝐴 ⊢ 𝑇 ) ↠ 𝜈+(𝜎2; 𝐴 ⊢ 𝑇 )

Γ ⊢ I
Inherit(ℎ)[𝛾] ≡ I

Inherit(ℎ[𝛾]) Γ ⊢ inh(I Inherit(ℎ), 𝜇+(ℓ, 𝑡)) ≡ 𝜇+(inh(ℎ, ℓ), 𝑡) ∶ ..

Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ, 𝐴 ⊢ 𝑇 Γ, 𝐴, 𝑇 ⊢ 𝑡 ∶ 𝑇[𝜋1]
Γ ⊢ I

Ov
1(ℎ, 𝑡) ∶ (𝜈+(𝜎1; 𝐴 ⊢ 𝑇 )) ↠ (𝜈+(𝜎2; 𝐴 ⊢ 𝑇 ))

Γ ⊢ I
Ov

1(ℎ, 𝑡∗)[𝛾] ≡ I
Ov

1(ℎ[𝛾], 𝑡[𝛾 ↑]) Γ ⊢ inh(I Ov1(ℎ, 𝑡∗), 𝜇+(ℓ, 𝑡)) ≡ 𝜇+(inh(ℎ, ℓ), 𝑡∗[id, 𝑡]) ∶ ..

Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ, 𝐴1 ⊢ 𝑡1 ∶ 𝑇1 Γ, 𝐴1 ⊢ 𝑡2 ∶ 𝑇2
Γ ⊢ I

Ov
2(ℎ, 𝑡1, 𝑡2) ∶ (𝜈+(𝜎1; 𝐴1 ⊢ S(𝑡1))) ↠ (𝜈+(𝜎2; 𝐴2 ⊢ S(𝑡2)))
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Γ ⊢ I
Ov

2(ℎ, 𝑡1, 𝑡2)[𝛾] ≡ I
Ov

2(ℎ[𝛾], 𝑡1[𝛾 ↑], 𝑡2[𝛾 ↑])
Γ ⊢ inh(I Ov2(ℎ, 𝑡1, 𝑡2), 𝜇+(ℓ, 𝑡)) ≡ 𝜇+(inh(ℎ, ℓ), 𝑡2) ∶ ..

[inh/nest]
Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ, 𝐴1 ⊢ 𝜏1 LSig

Γ, 𝐴2 ⊢ 𝜏2 LSig Γ, 𝐴2 ⊢ ↾ ∶ 𝐴1[p1] ProjWk 𝐴2 𝐴1 ↾ Γ, 𝐴 ⊢ ℎinner ∶ 𝜏1[p1, ↾] ↠ 𝜏2
Γ ⊢ I

Nest(ℎ, ↾, ℎinner ) ∶ 𝜈+(𝜎1; 𝐴1 ⊢ L(𝜏1)) ↠ 𝜈+(𝜎2; 𝐴2 ⊢ L(𝜏2))

Γ ⊢ I
Nest(ℎ, ↾, ℎinner )[𝛾] ≡ I

Nest(ℎ[𝛾], ↾[𝛾 ↑], ℎinner [𝛾 ↑]) ∶ 𝜈+(𝜎1; 𝐴 ⊢ L(𝜏1))[𝛾] ↠ 𝜈+(𝜎2; 𝐴 ⊢ L(𝜏2))[𝛾]
Γ ⊢ inh(I Nest(ℎ, ↾, ℎinner ), 𝜇+(ℓ, 𝑡)) ≡ 𝜇+(inh(ℎ, ℓ), inh(ℎinner , (𝑡)[p1, ↾])) ∶ ..

Γ ⊢𝑙 𝜎 LSig
𝑛

Γ ⊢𝑙+1 L+(𝜎)

[eL-intro]
Γ ⊢ 𝑛 Nat Γ ⊢ ℎ ∶ 𝜎 ↠ 𝜎 ′ Γ ⊢ 𝑜 ∶ L(𝜎)

Γ ⊢ iL
+(𝑛, 𝜎 ′, ℎ, 𝑜) ∶ L+(𝜎)

[eL-elim]
Γ ⊢𝑙 𝜎 LSig

𝑛 Γ ⊢ 𝑜 ∶ L+(𝜎)
Γ ⊢ 𝑜.size Nat Γ ⊢𝑙 𝑜.sig LSig

𝑜.size Γ ⊢ 𝑜.inh ∶ 𝜎 ↠ 𝑜.sig Γ ⊢ eL
+(𝑜) ∶ L(𝜎)

Γ ⊢ iL
+(𝑛, 𝜎 ′, ℎ, 𝑜)[𝛾] ≡ iL

+(𝑛[𝛾], 𝜎 ′[𝛾], ℎ[𝛾], 𝑜[𝛾]) ∶ .. Γ ⊢ 𝑜.size[𝛾] ≡ 𝑜[𝛾].size Nat

Γ ⊢𝑙 𝑜.sig[𝛾] ≡ 𝑜[𝛾].sig LSig
𝑜.size Γ ⊢ iL

+(𝑛, 𝜎 ′, ℎ, 𝑜).size ≡ 𝑛 Nat

Γ ⊢ 𝑜.inh[𝛾] ≡ 𝑜[𝛾].inh ∶ 𝜎[𝛾] ↠ 𝑜.sig[𝛾] Γ ⊢ eL
+(𝑜)[𝛾] ≡ eL

+(𝑜[𝛾]) ∶ ..
Γ ⊢𝑙 iL

+(𝑛, 𝜎 ′, ℎ, 𝑜).sig ≡ 𝜎 ′
LSig

𝑜.size Γ ⊢ iL
+(𝑛, 𝜎 ′, ℎ, 𝑜).inh ≡ ℎ ∶ 𝜎 ↠ 𝑜.sig

Γ ⊢ eL
+(iL+(𝑛, 𝜎 ′, ℎ, 𝑜)) ≡ 𝑜 ∶ L(𝜎)

[inh/comp]
Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ′ ∶ 𝜎2 ↠ 𝜎3

Γ ⊢ ℎ ∘ ℎ′ ∶ 𝜎1 ↠ 𝜎3
Γ ⊢ 𝑖 ∶ 𝜎1 ↠ 𝜎2

Γ ⊢ 𝑖 ∘ I
Id ≡ 𝑖 Γ ⊢ I

Id ∘ 𝑖 ≡ 𝑖

Γ ⊢ 𝑖 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ 𝑗 ∶ 𝜎2 ↠ 𝜎3 Γ, 𝐴 ⊢ 𝑡 ∶ 𝑇
Γ ⊢ 𝑖 ∘ I

Ext(𝑗, 𝑡) ≡ I
Ext(𝑖 ∘ 𝑗, 𝑡)
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Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎2 ↠ 𝜎3 Γ, 𝐴 ⊢ 𝑡 ∶ 𝑇
Γ ⊢ I

Ext(ℎ1, 𝑡) ∘ I
Inherit(ℎ2) ≡ I

Ext(ℎ1 ∘ ℎ2, 𝑡)

Γ ⊢ I
Inherit(ℎ1) ∘ I

Inherit(ℎ2) ≡ I
Inherit(ℎ1 ∘ ℎ2)

Γ ⊢ I
Ov

1(ℎ1, 𝑡) ∘ I
Inherit(ℎ2) ≡ I

Ov
1(ℎ1 ∘ ℎ2, 𝑡)

Γ ⊢ I
Ov

2(ℎ1, 𝑡1, 𝑡2) ∘ I
Inherit(ℎ2) ≡ I

Ov
2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡2)

Γ ⊢ I
Ov

2(ℎ1, 𝑡1, 𝑡2) ∘ I
Inherit(ℎ2) ≡ I

Ov
2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡2)

Γ ⊢ I
Nest(ℎ1, ↾, 𝑖) ∘ I

Inherit(ℎ2) ≡ I
Nest(ℎ1 ∘ ℎ2, ↾, 𝑖)

Γ ⊢ I
Ext(ℎ1, 𝑡) ∘ I

Ov
1(ℎ2, 𝑡∗) ≡ I

Ext(ℎ1 ∘ ℎ2, 𝑡∗[id, 𝑡])
Γ ⊢ I

Inherit(ℎ1) ∘ I
Ov

1(ℎ2, 𝑡∗) ≡ I
Ov

1(ℎ1 ∘ ℎ2, 𝑡∗)
Γ ⊢ I

Ov
1(ℎ1, 𝑡) ∘ I

Ov
1(ℎ2, 𝑡∗) ≡ I

Ov
1(ℎ1 ∘ ℎ2, 𝑡∗[p1, 𝑡])

Γ ⊢ I
Ov

2(ℎ1, 𝑡1, 𝑡2) ∘ I
Ov

1(ℎ2, 𝑡∗) ≡ I
Ov

2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡2)
Γ ⊢ I

Nest(ℎ1, ↾, 𝑖) ∘ I
Ov

1(ℎ2, 𝑡∗) ≡ I
Nest(ℎ1 ∘ ℎ2, ↾, 𝑖)

Γ ⊢ I
Ext(ℎ1, 𝑡) ∘ I

Ov
2(ℎ2, 𝑡1, 𝑡2) ≡ I

Ext(ℎ1 ∘ ℎ2, 𝑡2)
Γ ⊢ I

Inherit(ℎ1) ∘ I
Ov

2(ℎ2, 𝑡1, 𝑡2) ≡ I
Ov

2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡2)
Γ ⊢ I

Ov
1(ℎ1, 𝑡) ∘ I

Ov
2(ℎ2, 𝑡1, 𝑡2) ≡ I

Ov
2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡2)

Γ ⊢ I
Ov

2(ℎ1, 𝑡1, 𝑡2) ∘ I
Ov

2(ℎ2, 𝑡2, 𝑡3) ≡ I
Ov

2(ℎ1 ∘ ℎ2, 𝑡1, 𝑡3)
Γ ⊢ I

Ext(ℎ1, 𝑡) ∘ I
Nest(ℎ2, ↾, 𝑖) ≡ I

Ext(ℎ1 ∘ ℎ2, inh(𝑖, 𝑡)[p1, ↾])
Γ ⊢ I

Inherit(ℎ1)𝑡 ∘ I
Nest(ℎ2, ↾, 𝑖) ≡ I

Nest(ℎ1 ∘ ℎ2, ↾, 𝑖)
Γ ⊢ I

Ov
1(ℎ1, 𝑡) ∘ I

Nest(ℎ2, ↾, 𝑖) ≡ I
Nest(ℎ1 ∘ ℎ2, ↾, 𝑖)

Γ ⊢ I
Nest(ℎ1, ↾, 𝑖) ∘ I

Nest(ℎ2, ↾′, 𝑖′) ≡ I
Nest(ℎ1 ∘ ℎ2, ↾[p1, ↾′], 𝑖[p1, ↾

′] ∘ 𝑖′)

[mixin/formation]
Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3

(ℎ1 ⊕⟩ ℎ2) ∈ { (𝜎4, ℎ3, ℎ4) | Γ ⊢ 𝜎4 LSig, Γ ⊢ ℎ3 ∶ 𝜎2 ↠ 𝜎4, Γ ⊢ ℎ4 ∶ 𝜎3 ↠ 𝜎4 }

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3
I
Id ⊕⟩ ℎ2 ≡ (𝜎3, ℎ, I Id) ℎ1 ⊕⟩ I

Id ≡ (𝜎2, I Id, ℎ)

ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Ext(ℎ1, 𝑡1) ⊕⟩ ℎ2 ≡ (_, I Inherit(ℎℎ2), I Ext(ℎℎ3, 𝑡1))
ℎ2 ⊕⟩ I

Ext(ℎ1, 𝑡1) ≡ (_, I Ext(ℎℎ3, 𝑡1), I Inherit(ℎℎ2))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Inherit(ℎ1) ⊕⟩ I

Inherit(ℎ2) ≡ (_, I Inherit(ℎℎ2), I Inherit(ℎℎ3))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Inherit(ℎ1) ⊕⟩ I

Ov
1(ℎ2, 𝑡) ≡ (_, I Ov1(ℎℎ2, 𝑡), I Inherit(ℎℎ3))

I
Ov

1(ℎ2, 𝑡) ⊕⟩ I
Inherit(ℎ1) ≡ (_, I Inherit(ℎℎ3), I Ov1(ℎℎ2, 𝑡))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Inherit(ℎ1) ⊕⟩ I

Ov
2(ℎ2, 𝑡1, 𝑡2) ≡ (_, I Ov2(ℎℎ2, 𝑡1, 𝑡2), I Inherit(ℎℎ3))

I
Ov

2(ℎ2, 𝑡1, 𝑡2) ⊕⟩ I
Inherit(ℎ1) ≡ (_, I Inherit(ℎℎ3), I Ov2(ℎℎ2, 𝑡1, 𝑡2))



35

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Inherit(ℎ1) ⊕⟩ I

Nest(ℎ2, ↾, 𝑖) ≡ (_, I Nest(ℎℎ2, ↾, 𝑖), I Inherit(ℎℎ3))
I
Nest(ℎ2, ↾, 𝑖) ⊕⟩ I

Inherit(ℎ1) ≡ (_, I Inherit(ℎℎ3), I Nest(ℎℎ2, ↾, 𝑖))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3)
I
Ov

1(ℎ1, 𝑡1) ⊕⟩ I
Ov

1(ℎ2, 𝑡2) ≡ (_, I Ov1(ℎℎ2, 𝑡2), I Ov1(ℎℎ3, 𝑡2))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3
ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3) Γ, 𝐴1 ⊢ S(𝑡1) Γ, 𝐴2 ⊢ S(𝑡2) Γ, 𝐴,S(𝑡1) ⊢ 𝑡′1 ∶ S(𝑡1)[p1]

I
Ov

1(ℎ1, 𝑡′1) ⊕⟩ I
Ov

2(ℎ2, 𝑡1, 𝑡2) ≡ (_, I Ov2(ℎℎ2, 𝑡1, 𝑡2), I Inherit(ℎℎ3))
I
Ov

2(ℎ2, 𝑡1, 𝑡2) ⊕⟩ I
Ov

1(ℎ1, 𝑡′1) ≡ (_, I Ov2(ℎℎ3, 𝑡2, 𝑡1), I Inherit(ℎℎ2))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2
Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 ℎ1 ⊕⟩ ℎ2 = (𝜏 , ℎℎ2, ℎℎ3) Γ, 𝐴1 ⊢ S(𝑡1) Γ, 𝐴2 ⊢ S(𝑡2) Γ, 𝐴3 ⊢ S(𝑡3)

I
Ov

2(ℎ1, 𝑡1, 𝑡3) ⊕⟩ I
Ov

2(ℎ2, 𝑡1, 𝑡3) ≡ (_, I Ov2(ℎℎ2, 𝑡1, 𝑡3), I Inherit(ℎℎ3))

Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3 Γ ⊢ 𝑖1 ∶ 𝜏1 ↠ 𝜏2 Γ ⊢ 𝑖2 ∶ 𝜏1 ↠ 𝜏3
ℎ1 ⊕⟩ ℎ2 = (𝜎4, ℎ3, ℎ4) (𝑔1, 𝑔2) = ProjWkMx(↾1, ↾2) 𝑖1[p1, 𝑔1] ⊕⟩ 𝑖2[p1, 𝑔2] = (𝜏4, 𝑖3, 𝑖4)

I
Nest(ℎ1, ↾1, 𝑖1) ⊕⟩ I

Nest(ℎ2, ↾2, 𝑖2) ≡ (_, I Nest(ℎ3, 𝑔1, 𝑖3), I Nest(ℎ4, 𝑔2, 𝑖4))

[Signature/mixin]
Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3
𝒮⊕⟩
𝜎1(ℎ1, ℎ2) ≔ Γ ⊢ (ℎ1 ⊕⟩ ℎ2).0 LSig

[inh/qantified/apply]
Γ ⊢ ℓ ∶ L+(𝜎1) Γ ⊢ 𝑖 ∶ 𝜎1 ↠ 𝜎2 ℳ ≔ (ℓ.inh ⊕⟩ 𝑖)

inh
⊕⟩(𝑖, ℓ) ≔ Γ ⊢ inh(ℳ.1, inh(ℓ.inh, eL+(ℓ))) ∶ 𝒮⊕⟩(ℓ.inh, 𝑖)

[Lkg/Concatenation]
Γ ⊢ ℓ1 ∶ L+(𝜎) Γ ⊢ ℓ2 ∶ L+(𝜎)

ℓ1 ⊕⟩ ℓ2 ≔ Γ ⊢ inh
⊕⟩(ℓ2.inh, ℓ1) ∶ 𝒮⊕⟩

𝜎 (ℓ1.inh, ℓ2.inh)

[inh/lifting]
Γ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ 𝑖 ∶ 𝜎1 ↠ 𝜎3 ℳ ≔ (ℎ ⊕⟩ 𝑖)

liftℎ(𝑖) ≔ Γ ⊢ ℳ.1 ∶ 𝜎2 ↠ 𝒮⊕⟩
𝜎1(ℎ, 𝑖)

[inh/mixin/diagonal]
Γ ⊢ ℎ1 ∶ 𝜎1 ↠ 𝜎2 Γ ⊢ ℎ2 ∶ 𝜎1 ↠ 𝜎3

(ℎ1 ⊕⟩⟩ ℎ2) ≔ Γ ⊢ ℎ1 ∘ (ℎ1 ⊕⟩ ℎ2).1 ∶ 𝜎1 ↠ 𝒮⊕⟩
𝜎1(ℎ1, ℎ2)

Contextual natural numbers. We use natural numbers to index the length of linkage signatures.
However, we allow not only literal natural numbers, but also Γ ⊢ 𝑥.size Nat as a dynamic (i.e.,
contextual) natural number depending on variables in the context. So we introduce a judgment
form Γ ⊢ 𝑛 Nat for contextual natural numbers. The judgment form indicates that 𝑛 is a valid
natural-number term in context Γ.
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Later, we will introduce W-type signature, also indexed by length. For them, the length is plain
natural number 𝑁.

Linkage signatures and linkages. Each linkage signature can be considered as a list of pairs of
types { (𝐴𝑖, 𝑇𝑖) | 𝐴𝑖 ⊢ 𝑇𝑖 } ([lsig/add],[lsig/proj]), where 𝑇𝑖 is the type of each field.

Similarly, each linkage can be considered as a list of terms { 𝑡𝑖 | 𝐴𝑖 ⊢ 𝑡𝑖 ∶ 𝑇𝑖 } ([l/add],[l/proj]),
directly reflecting the internal representation used in the Rocqet implementation, where each field
(e.g., 𝑡𝑖) is stored independently and quantified over the prior fields (e.g., 𝐴𝑖). We can thus call 𝐴𝑖
the abstracted prior fields.

However, in our implementation of Rocqet, this 𝐴𝑖 is largely determined by the prior terms; in
our FMLTT2.0 design, we do not enforce this restriction on 𝐴𝑖, for now. Thus, each linkage is simply
a list of independent fields, which makes removing and inserting new fields particularly simple in
the metatheory.

Later, we will show how, in FMLTT2.0, each linkage can be compiled to a module as in Rocqet,
realized by a function L(𝜎) → P(𝜎) , where P(𝜎) is a nested Sigma type modeling modules. The
restriction on 𝐴𝑖 will be the requirement for such compilation procedure.

Linkage transformers. Compared to the Rocqet implementation, we choose a nameless represen-
tation for linkage for uniformity with the de Bruijn indices representation in FMLTT2.0. However,
this nameless representation presents challenges to linkage concatenation, because we have no
clue which two fields should be aligned during concatenation.

To encode linkage concatenation, we introduce linkage transformer ⋅ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2. A linkage
transformer directly corresponds to a trait in Rocqet. It can be considered as a “delta” linkage
or a functor—given a parent linkage ℓ ∶ L(𝜎1), the linkage transformer ℎ can enrich ℓ to get the
derived linkage inh(ℎ, ℓ). Just like functors, linkage transformers can be composed sequentially
ℎ1 ∘ ℎ2 (i.e. [inh/comp]). Just like traits, linkage transformers can also be mixed ℎ3 ⊕⟩ ℎ4 (i.e.
[mixin/formation]).

To support ∘ and ⊕⟩, linkage transformers are inductively constructed, by
• I

Id identity,
• I

Ext(⋅, ⋅) field extension,
• I

Ov
1(⋅, ⋅) type-preserving overriding,

• I
Ov

2(⋅, ⋅, ⋅) singleton overriding, and
• I

Nest(⋅, ⋅, ⋅) nested linkage transformer.
We provide two kinds of overriding operation. I Ov1(⋅, ⋅) can override term but cannot change type;
I
Ov

2(, , ) can alter the type in the signature but only works with singleton types. I Nest(⋅, ⋅, ⋅) is used
when nested family needs inheritance.

When designing the computation behavior of ∘ and ⊕⟩, we have these two properties in mind:
• If ℎ1 ∘ ℎ2 = ℎ3, then inh(ℎ2, inh(ℎ1, 𝑜)) ≡ inh(ℎ1 ∘ ℎ2, 𝑜).
• If ℎ1 ⊕⟩ ℎ2 = (_, ℎ3, ℎ4), then ℎ1 ∘ ℎ3 ≡ ℎ2 ∘ ℎ4 constitutes a commutative diagram.
But apparently these two properties do not hold generally; they hold only in some places. Some
weird behaviors in ∘ and ⊕⟩ are simply the incompetence of fulfilling these two extensional property.

Finally, the notation of ⊕⟩ should hint on its asymmetry, especially when overriding is involved.
For example, when ℎ1 ⊕⟩ ℎ2 has I

Ov
1(⋅, ⋅) in both ℎ1 and ℎ2, the final result will take ℎ2’s overriding.

Existential linkages and linkage concatenation. Consider a linkage transformer ⋅ ⊢ ℎ ∶ 𝜈 • ↠ 𝜎.
ℎ is quite limited as it can only be applied to the empty linkage inh(ℎ, 𝜇•) and give us L(𝜎).

We actually want to apply it to arbitrary linkage L(𝜎 ′), and after the application, we want to get,
intuitively speaking, L(𝜎 ′ + 𝜎).
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Such a quantified inheritance operation can be encoded as the result of mixin composition ⊕⟩.
Imagine a term of L(𝜎 ′) as a linkage transformer ⋅ ⊢ ℎ′ ∶ 𝜈 • ↠ 𝜎 ′. Then the desired L(𝜎 ′ + 𝜎) is
the result of ℎ′ ⊕⟩ ℎ.

To streamline this operation, we introduce a new type L+(𝜏 ), which is basically an existential
linkage that packs a signature 𝜏 ′ and a linkage transformer ⊢ ? ∶ 𝜏 ↠ 𝜏 ′ ([eL-intro], [eL-elim]).
This new type and the mixin operation ⊕⟩ can derive multiple helper functions, including linkage
concatenation [Lkg/Concatenation], quantified inheritance application [inh/qantified/apply],
[inh/lifting], and etc.

Nested inheritance and projective weakening. I
Nest(ℎ0, ↾, ℎ1) has the most involved intro-

duction rule among all the rules of linkage transformer. It requires ↾ to be a projective weakening
ProjWk ↾, which is essential to make I

Nest(ℎ0, ↾, ℎ1) support weakening from𝐴2 to𝐴1 in [inh/nest],
and supports mixin and composition of nested inheritance at the same time.

ProjWk𝐴2 𝐴1 𝑓 (e.g. [PJWK/formation]) is another judgment. It says a term Γ, 𝐴2 ⊢ 𝑓 ∶ 𝐴1[p1]
is Projective weakening if 𝐴2 ≅ Σ(𝐴1, 𝑀) for some type 𝑀, and 𝑓 is equivalent to projecting 𝐴1 out
of Σ(𝐴1, 𝑀). Those complicated rules 𝑓2[p1, 𝑓1] ≡ var1, 𝑓1[p1, 𝑓2] ≡ var1 is simply a native way to
say𝐴2 ≅ Σ(𝐴1, 𝑀). [PJWK/formation] is written in a way to implicitly specify that the derivation
of ProjWk ⋅ ⋅ ⋅ is isomorphic to three derivations of other judgments. Here, we are implicit about the
introduction rules, elimination rules, or computation rules—we simply acknowledge their existence
and use them when needed.

Now we will prove a theorem, to justify the composition rule and mixin rule between two linkage
transformers in our syntax rules:

Theorem 1 (ProjWk ⋅ ⋅ ⋅ preserves composition and mixin).

Comp (𝐻1 : ProjWk 𝐴2 𝐴1 𝑓1) and (𝐻2 : ProjWk 𝐴3 𝐴2 𝑓2) implies ProjWk 𝐴3 𝐴1 𝑓1[p1, 𝑓2]
Mixin Given (ℎ2: ProjWk 𝐴2 𝐴1 𝑓2) and (ℎ3: ProjWk 𝐴3 𝐴1 𝑓3),

we have a function ProjWkMx(𝑓2, 𝑓3) = (𝑔2, 𝑔3),
s.t. ProjWk Σ(𝐴1, ℎ2.𝑀 × ℎ3.𝑀) 𝐴2 𝑔2
and ProjWk Σ(𝐴1, ℎ2.𝑀 × ℎ3.𝑀) 𝐴2 𝑔2
and 𝑓2[p1, 𝑔2] ≡ 𝑓3[p1, 𝑔3]
(Apparently, ℎ2.𝑀 is the chosen 𝑀 specified in the ProjWk 𝐴2 𝐴1 𝑓2)

Proof. To proveComp, we simply notice that𝐴3 ≅ Σ(Σ(𝐴1, 𝐻1.𝑀), 𝐻2.𝑀) ≅ Σ(𝐴1, Σ(𝐻1.𝑀, 𝐻2.𝑀)).
We omit the verification of equalties.

To proveMixin, the definition of 𝑔2 can be deduced from Γ, Σ(𝐴1, ℎ2.𝑀 × ℎ3.𝑀) ⊢ ... ∶ Σ(𝐴1, ℎ2.𝑀)
as 𝐴2 ≅ Σ(𝐴1, ℎ2.𝑀). Similarly for the definition of 𝑔3. Then we simply compute and verify all
equations. �

With this theorem, the computation rule of I Nest(⋅, ⋅, ⋅) ∘ I Nest(⋅, ⋅, ⋅) and I
Nest(⋅, ⋅, ⋅) ⊕⟩ I

Nest(⋅, ⋅, ⋅)
makes sense.

W-types and W-type signatures encoding inductive types. We follow the same W-type
formulation as Jin et al. [27].

W-types [38] are a succinct way to model inductive types in MLTT. Together with the identity
type Eq(⋅, ⋅), they can express a whole host of inductive types [25] with multiple constructors.

We alter the formulation of W-types to get closer to the inductive facility in Rocq. The list
of constructors of an inductive type in Rocq corresponds to a W-type signature—a signature
Γ ⊢ 𝜏 WSig

𝑛 consititues of 𝑛 pairs of types { (𝐴𝑖, 𝐵𝑖) | 𝐴𝑖 ⊢ 𝐵𝑖 }𝑖∈𝑛 ([wsig/empty] and [wsig/add]),
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each pair modeling one constructor of the inductive type. We can project the 𝑖-th pair of types of
the signature 𝜏 using the rules Γ ⊢ w𝜋 𝑖

1(𝜏 ) and Γ ⊢ w𝜋 𝑖
2(𝜏 ) ∶ w𝜋 𝑖

1(𝜏 ) → U.
For each pair of types identifying a constructor, the first type models the non-inductive arguments

of the constructor, and the second type models the arity of the inductive arguments. We use a
concrete example to show their correspondence: the inductive type with four constructors (tm_unit,
tm_var, tm_abs and tm_app) is modeled by W-type 𝜏tm in the following way, where 0 is the bottom
type ⊥, 1 the unit type ⊤, 2 the boolean type, and 𝑇id a type encoding of id:

tm_unit : tm tm_var : id → tm tm_abs : id → tm → tm tm_app : tm → tm → tm

𝜏 0tm ≔ w
+(w•,1, 𝜆_.0) 𝜏 1tm ≔ w

+(𝜏 0tm, 𝑇id, 𝜆_.0) 𝜏 2tm ≔ w
+(𝜏 1tm, 𝑇id, 𝜆_.1) 𝜏tm ≔ w

+(𝜏 2tm, 1, 𝜆_.2)

While tm_unit and tm_var have no inductive arguments, tm_abs has one and tm_app has two. The
encoding of tm_abs has type 𝑇id → (1 → El(W(𝜏tm))) → El(W(𝜏tm)), and that of tm_app has type
1 → (2 → El(W(𝜏tm))) → El(W(𝜏tm)).

W-type elimination via recursion. W-types are eliminated with the form Wrec(𝜏 , ℓ, 𝑡), where 𝑡
is of a W-type El(W(𝜏 )), and ℓ is essentially an 𝑛-tuple of case handlers for the 𝑛 constructors in 𝜏
([tm/wrec]).

Each case handler has a type of the form CaseTy(𝐴, 𝐵, 𝑇 ), where 𝑇 is the motive of the recursion
([tyeq/casety]); for simplicity, we model only non-dependent motives. The collection of case
handlers ℓ encodes those defined and inherited by an FRecursion command in Rocqet.

We organize case handlers as a linkage for code reuse and composition—when the inductive
type (W-type) is inherited and combined from different parent families, the corresponding case
handlers from the parent families can be mixed together to recover a complete recursive function.

A.3 A Proof-Relevant Logical-Relations Model for Canonicity
Now we prove canonicity (and consistency) for FMLTT2.0 using a logical-relations model. We follow
the reducibility argument of Kaposi et al. [29], Coquand [8], and Sterling [56] to construct our
model.

The elimination principle in use to construct these prior models are based on QIITs, categories
with families [15], and the generalized algebraic theory [6], respectively. Without exposing the
reader to too many technical details, our metalanguage should be understood as an instance of any
of the above logical frameworks—the difference is that quotienting is manual in our formulation,
whereas it is automatic within those logical frameworks. Thus, our elimination principle will
be formulated as a simple induction on the derivation tree, but formally speaking, theoretically
supported by the elimination principle of QIIT.

We state the canonicity theorem first:

Theorem 2 (Canonicity). If ⋅ ⊢ 𝑡 ∶ B, then either ⋅ ⊢ 𝑡 ≡ tt ∶ B or ⋅ ⊢ 𝑡 ≡ ff ∶ B.

Canonicity is a key criterion for a dependent type theory to be considered as a programming
language or as a computational foundation for mathematics. Since if this theorem is proven in
a computable metalogic, then by the Curry—Howard correspondence, the canonicity theorem
provides a big-step interpreter for closed terms of the boolean type.

Canonicity theorem is about characterizing well-typed closed terms. The canonicity model is
trying to prove this characterization holds on all possible closed terms, by induction on derivation.

A.3.1 Canonicity Model of the MLTT fragment. We start with interpreting the MLTT fragment.
First, we need the mathematical setup to interpret universe levels, following Sterling [56, As-

sumption 5.2]:
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Assumption A.1 (Set-theoretic Universe Assumption). We assume a transfinite hierarchy of
Grothendieck universes Set𝑖 for 𝑖 ∈ {0, 1, ..., 𝜔} in our ambient metalogic.

This assumption is setting up a powerful set-theoretic environment for us. We can roughly
consider each Grothendieck universe Set𝑖 as the Set𝑖 in Agda:

• Each Set𝑖 is closed under dependent function types and dependent pair types. For exam-
ple, later, for our interpretation of dependent function types, when we have denotations
J𝐴K𝐶, J𝐵K𝐶 ∈ Set𝑖, we will have JΠ(𝐴, 𝐵)K𝐶 ∈ Set𝑖.

• The universe hierarchy is cumulative, as Set𝑖 ∈ Set𝑖+1 and Set𝑖 ⊆ Set𝑖+1.
• Thus, if J𝐴K𝐶 ∈ Set𝑖, J𝐵K𝐶 ∈ Set𝑗, we will have JΠ(𝐴, 𝐵)K𝐶 ∈ Set𝑖 ∪ Set𝑗 = Set𝑖⊔𝑗.

Like most logical-relations proofs, we interpret each judgment and inductively interpret each
derivation. We are working in an intrinsic setting; thus, even if we omit contexts for brevity, each
syntax piece is actually still well-typed.

Our canonicity model for the base MLTT fragment follows the constructions in Coquand [8] and
Sterling [56] in that it utilizes the facilities of the ambient metalogic; for example, we use dependent
functions and dependent tuples in the ambient metalogic Set𝑖 to interpret dependent functions and
tuples in FMLTT2.0.

JΓ ⊢K𝐶 is a function ∶ { 𝛾 | ⋅ ⊢ 𝛾 ∶ Γ } → Set𝜔

(i.e., sets indexed by closed substitution)

JΓ ⊢𝑗 𝑇K𝐶 is a dependent function ∶ ∏
⋅⊢𝛾∶Γ

∏
𝛾 ′∈JΓ⊢K𝐶(𝛾 )

{ 𝑡 | ⋅ ⊢ 𝑡 ∶ 𝑇[𝛾] } → Set𝑗

JΓ ⊢ 𝛿 ∶ ΔK𝐶 is a dependent function ∶ ∏
⋅⊢𝛾∶Γ

∏
𝛾 ′∈JΓ⊢K𝐶(𝛾 )

JΔ ⊢K𝐶(𝛿 ∘ 𝛾 )

JΓ ⊢ 𝑡 ∶ 𝑇K𝐶 is a dependent function ∶ ∏
⋅⊢𝛾∶Γ

∏
𝛾 ′∈JΓ⊢K𝐶(𝛾 )

JΓ ⊢ 𝑇K𝐶(𝛾 )(𝛾
′)(𝑡[𝛾])

JΓ ⊢ 𝑇[𝜎]K𝐶(𝛾 )(𝛾
′)(𝑡) = J𝑇K𝐶(𝜎 ∘ 𝛾 )(J𝜎K(𝛾 )(𝛾 ′))(𝑡)

JΓ ⊢ ⇑𝑏𝑎 𝑇K𝐶(𝛾 )(𝛾
′)(𝑡) = J𝑇K𝐶(𝛾 )(𝛾

′)(𝑡)
JΓ ⊢ ⊤K𝐶(𝛾 )(𝛾

′)(𝑡) = {⋆} a singleton set
JΓ ⊢ ⊥K𝐶(𝛾 )(𝛾

′)(𝑡) = ∅

JΓ ⊢ BK𝐶(𝛾 )(𝛾
′)(𝑡) =

⎧
⎨
⎩

{⋆1} if 𝑡 ≡ tt

{⋆2} if 𝑡 ≡ ff

∅ otherwise

JΓ ⊢ Eq(𝑎, 𝑏)K𝐶(𝛾 )(𝛾
′)(𝑡) = {

{⋆} if 𝑡 ≡ refl(𝑎[𝛾]) and 𝑎[𝛾] ≡ 𝑏[𝛾]
∅ otherwise

JΓ ⊢ Π(𝐴, 𝐵)K𝐶(𝛾 )(𝛾
′)(𝑡) = ∏

⋅⊢𝑢∶𝐴[𝛾]
∏

𝑢′∈J𝐴K𝐶(𝛾 )(𝛾
′)(𝑢)

J𝐵K𝐶(𝛾 , 𝑢)((𝛾
′, 𝑢′))(app(𝑡)[id, 𝑢])

JΓ ⊢ Σ(𝐴, 𝐵)K𝐶(𝛾 )(𝛾
′)(𝑡) = ∑

𝑢′∈J𝐴K𝐶(𝛾 )(𝛾
′)(fst 𝑡)

J𝐵K𝐶(𝛾 , fst 𝑡)((𝛾 ′, 𝑢′))(snd 𝑡)

J⋅ ⊢K𝐶(𝛾 ) = {⋆}

JΓ, 𝑇 ⊢K𝐶(𝛾𝑡) = { (𝛾 ′, 𝑡′) | 𝛾 ′ ∈ JΓ ⊢K𝐶(𝜋1𝛾𝑡), 𝑡
′ ∈ J⋅ ⊢ 𝑇[𝛾]K𝐶(𝜋1𝛾𝑡)(𝛾

′)(𝜋2𝛾𝑡) }
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JΓ ⊢ 𝜋1𝛿 ∶ ΔK𝐶(𝛾 )(𝛾
′) = J𝛿K𝐶(𝛾 )(𝛾

′)[0] get the first element of the tuple
JΓ ⊢ 𝜋2𝛿 ∶ ΔK𝐶(𝛾 )(𝛾

′) = J𝛿K𝐶(𝛾 )(𝛾
′)[1] get the second element of the tuple

JΓ ⊢ 𝛿, 𝑡 ∶ ΔK𝐶(𝛾 )(𝛾
′) = (J𝛿K𝐶(𝛾 )(𝛾

′), J𝑡K𝐶(𝛾 )(𝛾
′))

JΓ ⊢ id ∶ ΓK𝐶(𝛾 )(𝛾
′) = 𝛾 ′

JΓ ⊢ 𝜖 ∶ ⋅K𝐶(𝛾 )(𝛾
′) = ⋆

JΓ ⊢ 𝛿1 ∘ 𝛿2 ∶ ΔK𝐶(𝛾 )(𝛾
′) = J𝛿1K𝐶(𝛿2 ∘ 𝛾 )(J𝛿2K𝐶(𝛾 )(𝛾

′))
JΓ ⊢ 𝑡[𝜎] ∶ 𝑇[𝜎]K𝐶(𝛾 )(𝛾

′) = J𝑡K𝐶(𝜎 ∘ 𝛾 )(J𝜎K𝐶(𝛾 )(𝛾
′))

JΓ ⊢ () ∶ ⊤K𝐶(𝛾 )(𝛾
′) = ⋆

JΓ ⊢ tt ∶ BK𝐶(𝛾 )(𝛾
′) = ⋆1

JΓ ⊢ ff ∶ BK𝐶(𝛾 )(𝛾
′) = ⋆2

JΓ ⊢ if(𝑐, 𝑎, 𝑏) ∶ 𝑇K𝐶(𝛾 )(𝛾
′) = {

J𝑎K𝐶(𝛾 )(𝛾
′) if J𝑐K(𝛾 )(𝛾 ′) = ⋆1

J𝑏K𝐶(𝛾 )(𝛾
′) if J𝑐K(𝛾 )(𝛾 ′) = ⋆2

JΓ ⊢ refl(𝑡) ∶ Eq(𝑡, 𝑡)K𝐶(𝛾 )(𝛾
′) = ⋆

JΓ ⊢ J(𝑤, 𝑡) ∶ 𝐶[𝑖𝑑, 𝑣, 𝑡]K𝐶(𝛾 )(𝛾
′) = J𝑤K𝐶(𝛾 )(𝛾

′) given Γ ⊢ 𝑡 ∶ Eq(𝑢, 𝑣)
Since J𝑡K𝐶(𝛾 )(𝛾

′) witnesses 𝑡[𝛾] ≡ refl(𝑢[𝛾]) and 𝑢[𝛾] ≡ 𝑣[𝛾]
JΓ ⊢ 𝜆(𝑡) ∶ Π(𝐴, 𝐵)K𝐶(𝛾 )(𝛾

′) = 𝜆𝑢𝜆𝑢′.J𝑡K𝐶(𝛾 , 𝑢)(𝛾
′, 𝑢′)

JΓ ⊢ app(𝑡) ∶ 𝐵K𝐶(𝛾 )(𝛾
′) = J𝑡K𝐶(𝜋1𝛾 )(𝛾

′[0])(𝜋2𝛾 )(𝛾 ′[1])
JΓ ⊢ ⟨𝑎, 𝑏⟩ ∶ Σ(𝐴, 𝐵)K𝐶(𝛾 )(𝛾

′) = (J𝑎K𝐶(𝛾 )(𝛾
′), J𝑏K𝐶(𝛾 )(𝛾

′))
JΓ ⊢ fst 𝑡 ∶ 𝑇K𝐶(𝛾 )(𝛾

′) = J𝑡K𝐶(𝛾 )(𝛾
′)[0] extract the first element in the tuple

JΓ ⊢ snd 𝑡 ∶ 𝑇K𝐶(𝛾 )(𝛾
′) = J𝑡K𝐶(𝛾 )(𝛾

′)[1]

JΓ ⊢𝑗+1 U𝑗K𝐶(𝛾 )(𝛾
′)(𝑇 ) = { 𝑡 | ⋅ ⊢ 𝑡 ∶ El(𝑇 ) } → Set𝑗

JΓ ⊢ c(𝑇 ) ∶ U𝑗K𝐶(𝛾 )(𝛾
′) = J𝑇K𝐶(𝛾 )(𝛾

′)

JΓ ⊢𝑗 El(𝑇 )K𝐶(𝛾 )(𝛾
′)(𝑡) = J𝑇K𝐶(𝛾 )(𝛾

′)(𝑡)

Here, ⋆, ⋆1, ⋆2 are just some arbitrary fixed elements. Our interpretation respect all the equations
in the syntax, especially [tm/LiftEq] because the interpretation of J⇑𝑏𝑎 𝑇K𝐶 = J𝑇K𝐶.

Now that the canonicity model of MLTT is constructed, we can prove the fundamental theorem
of MLTT, which corresponds to the fundamental lemma in a conventional logical relation proof.

Theorem 3 (Fundamental Theorem for MLTT fragement). If Γ ⊢ 𝑡 ∶ 𝑇, then its semantic
interpretation is a dependent function such that J𝑡K𝐶 ∶ ∏⋅⊢𝛾∶Γ ∏𝛾 ′∈JΓ⊢K𝐶(𝛾 )

JΓ ⊢ 𝑇K𝐶(𝛾 )(𝛾
′)(𝑡[𝛾]).

A.3.2 Comparison to conventional Logical Relation Proof. This MLTT canonicity model actually
shares a great similarity with the classical logical relation style termination/type-safety proof of
STLC [55, §3.2], formulated in operational semantic. We will point out the similarity for better
understanding of this MLTT canonicity model.
(1) Both proofs are carried out by an inductive interpretation/denotation of derivation—both proofs

start with interpretation of types, contexts, and then terms.



41

(2) Both proofs use a set of closed terms as type denotations.
(3) Both proofs use a list of closed terms/substitutions as context denotation.
(4) Both proofs share similarity on interpretation of terms—with context denotations substituted,

they belong to type denotations.
The biggest difference between the two proofs is that Skorstengaard [55, §3.2] uses proof-irrelevant

logical relations while our MLTT canonicity model uses proof-relevant logical relations. “Proof-
irrelevance” means, for the former one, term interpretation is merely a proposition (we cite from
Skorstengaard [55, §3.2])

Γ ⊧ 𝑒 ∶ 𝜏 ≔ ∀𝛾 ∈ 𝒢JΓK, 𝛾 (𝑒) ∈ ℰJ𝜏K

while for the latter one, term interpretation is a function, which can also classify other values.
For example JΓ ⊢ c(B) ∶ UK𝐶 is a function JΓ ⊢ BK𝐶 that maps to a binary set. Compared to the
proposition, this is more like a piece of data that carry sets. Coquand [8] points out this strategy
works well with an infinite universe hierarchy and allows concise proofs for type theory with
universes.

A.3.3 Consistency and Canonicity Theorems for the MLTT fragment. The first consequence of
Theorem 3 is the consistency of the MLTT fragment—we cannot derive ⋅ ⊢ 𝑡 ∶ ⊥. Otherwise, we
would have an element in the empty set, J⋅ ⊢ 𝑡 ∶ ⊥K𝐶(𝜖)(⋆) ∈ J⊥K𝐶(𝜖)(⋆)(𝑡[𝛾]) = ∅, a contradiction.

Theorem 4 (Consistency). The typing judgment ⋅ ⊢ 𝑡 ∶ ⊥ is not derivable for any term 𝑡.

Next, let’s use Theorem 3 on an arbitrary term ⋅ ⊢ 𝑡 ∶ B, then we have J𝑡K that witness

∏
⋅⊢𝛾∶⋅

∏
𝛾 ′∈J⋅⊢K𝐶(𝛾 )

JΓ ⊢ BK𝐶(𝛾 )(𝛾
′)(𝑡[𝛾]) ⟺ 𝑡 ∈ { 𝑥 | 𝑥 ≡ tt or 𝑥 ≡ ff }

Theorem 5. For arbitrary closed boolean term 𝑡, it is (judgmentally) equal to either tt or ff.

To some extent, the canonicity theorem justifies MLTT as a basic type-safe programming
language, resolving the aforementioned two concerns (†):

(1) If we consider judgmental equality as reduction rules, then the canonicity theorem is saying
that well-typed boolean program never gets stuck and actually terminates. This also means
that we have a complete set of judgmental equalities.

(2) Our canonicity proof is constructive. If this proof is mechanically formalized in a constructive
proof assistant, then under Curry–Howard correspondence, our theorem can act as a (big-step)
program interpreter that can execute arbitrary closed boolean program.

The above two theorems are essential properties for any dependent type theory. Now, we will
aim to extend this canonicity model to our FMLTT2.0, at the same time making sure that these two
properties still hold.

A.3.4 Dependent Function, Dependent Pair, and Type Connectives in the MLTT Canonicity Model.
Given the above model for MLTT, there should be a function Π𝑐 such that Π𝑐(J𝐴K𝐶, J𝐵K𝐶) =
JΠ(𝐴, 𝐵)K𝐶. Type-theoretically speaking, this Π𝑐 is the internal dependent function type of the above
model. We hope to use this function as a helper when defining the logical-relations model for the
rest of FMLTT2.0. However, such a function Π𝑐 is not yet possible because the definition JΠ(𝐴, 𝐵)K𝐶
is not based solely on J𝐴K𝐶 and J𝐵K𝐶, but also on the syntax Γ ⊢ 𝐴 and Γ, 𝐴 ⊢ 𝐵.
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Thus, we define a new denotation J𝑆K•𝐶 ≔ (𝑆, J𝑆K𝐶) that also returns the syntax piece 𝑆.6 Then,
we can have a function Π• such that Π•(J𝐴K•𝐶, J𝐵K•𝐶) = JΠ(𝐴, 𝐵)K•𝐶 now that the syntax is available.
Similarly, there are functions Σ•, (𝑎,• 𝑏), and 𝛾 ,• 𝑡 for dependent pair types, dependent pairs, and
substitution extension (and more for other constructions).

Now, when given 𝑆• (i.e., the syntax and its semantic interpretation), we use 𝑆 or (𝑆•).⇂ to mean
the former (syntax part) and we use 𝑆 or (𝑆•) to mean the latter (the semantic part).

We need more internal type-theoretic constructions, as helper functions. We define the following:

Con Γ ≔ { 𝛾 | ⋅ ⊢ 𝛾 ∶ Γ } → Set𝜔 Con
• ≔ ∑

Γ⊢
Con Γ

Ty𝑗 Γ
• 𝑇 ≔ ∏

⋅⊢𝛾∶Γ
∏

𝛾 ′∈Γ (𝛾)

{ 𝑡 | ⋅ ⊢ 𝑡 ∶ 𝑇[𝛾] } → Set𝑗 Ty
•
𝑗 Γ

• ≔ ∑
Γ⊢𝑗𝑇

Ty𝑗 Γ
• 𝑇

Tm Γ• 𝑇 • 𝑡 ≔ ∏
⋅⊢𝛾∶Γ

∏
𝛾 ′∈Γ

𝑇 (𝛾 )(𝛾 ′)(𝑡[𝛾]) Tm
• Γ• 𝑇 • ≔ ∑

Γ⊢𝑡∶𝑇
Tm Γ• 𝑇 • 𝑡

Sub Γ• Δ• 𝛿 ≔ ∏
⋅⊢𝛾∶Γ

∏
𝛾 ′∈Γ (𝛾)

Δ (𝛿 ∘ 𝛾 ) Sub
• Γ• Δ• ≔ ∑

Γ⊢𝛿∶Δ
Sub Γ• Δ• 𝛿

These sets are collecting the syntax and semantic interpretation together. For each well-formed
type Γ ⊢𝑗 𝑇, we have its denotation J𝑇K𝐶 ∈ Ty𝑗 JΓK

•
𝐶 𝑇 and J𝑇K•𝐶 ∈ Ty

•
𝑗 JΓK

•
𝐶; for each well-typed term

Γ ⊢ 𝑡 ∶ 𝑇, we have its denotation J𝑡K𝐶 ∈ Tm JΓK•𝐶 J𝑇K•𝐶 𝑡 and J𝑡K•𝐶 ∈ Tm
• JΓK•𝐶 J𝑇K•𝐶; etc. The audience

should notice that these structure are just the type of the interpretation of judgments in the MLTT
canonicity model.

Notice that the input type ∏⋅⊢𝛾∶Γ ∏𝛾 ′∈Γ (𝛾) is part of Ty• , Tm• , and Sub
• . A useful fact about

them is : given a pair of arbitrary ⋅ ⊢ 𝛾 ∶ Γ and 𝛾 ′ ∈ Γ (𝛾), we can consider (𝛾 , 𝛾 ′) as an element
of Sub• ⋅• Γ•, and vice versa. Thus, we consider the pair (𝛾 , 𝛾 ′) the equivalent form of an element
𝛾 • ∈ Sub

• ⋅• Γ•.
So sometimes instead of working on ∏⋅⊢𝛾∶Γ ∏𝛾 ′∈Γ (𝛾) ..., we will work on ∏𝛾 •∈Sub• ⋅• Γ• ...

A.3.5 Canonicity Model for FMLTT2.0. .

Interpreting Contextual Nat.
We want to show ⋅ ⊢ 𝑛 Nat are bounds to be natural number, and thus we inductively define a

predicate Nat∅
𝑐 ⋅ ∶ { 𝑛 | ⊢ 𝑛 Nat } → Prop

0∅
𝑐 ∶ Nat∅

𝑐 0
𝑥 ∶ Nat∅

𝑐 𝑛
S∅

𝑐 𝑥 ∶ Nat∅
𝑐 𝑛 + 1

Then we can define the interpretation for judgments and derivations:

JΓ ⊢ 𝑥 NatK𝐶 is a depedent function ∶ ∏
𝛾 •∈Sub• ⋅• Γ•

Nat∅
𝑐 𝑥[𝛾]

JΓ ⊢ 𝑥[𝜎] NatK𝐶(𝛾
•) = J𝑥K𝐶(𝜎

•∘•𝛾 •)
JΓ ⊢ 0 NatK𝐶(𝛾

•) = 0∅
𝑐

JΓ ⊢ 𝑛 + 1 NatK𝐶(𝛾
•) = S∅

𝑐 J𝑛K𝐶(𝛾
•)

6This is also called glued interpretation in Sterling [56].
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We have verified that this interpretation respects the equality/quotient in the syntax.
We can subsequently define

Nat Γ• 𝑛 ≔ ∏
𝛾 •∈Sub• ⋅• Γ•

Nat∅
𝑐 𝑥[𝛾] Nat

• Γ• ≔ ∑
Γ⊢𝑛 Nat

Nat Γ• 𝑛

, where for arbitrary Γ ⊢ 𝑛 Nat, we have J𝑛K𝐶 ∈ Nat JΓK•𝐶 𝑛 and J𝑛K•𝐶 ∈ Nat
• JΓK•𝐶.

Interpreting Linkage Signature, Linkage and Linkage Type.
Similarly, to characterize closed signature, linkage and linkage type, we need to inductively

classify them.
We mutually-recursively define the following indexed sets, by induction on parameter 𝑛, since

we have 𝑛• ∈ Nat
• ⋅• witness 𝑛 to be a plain inductive natural number

𝑖
LSig∅

𝑐 (⋅) (⋅) ∶ ∏
𝑛•∈Nat• ⋅•

{ 𝜎 | ⊢ 𝜎 LSig
𝑛 } → Set𝑖+1

L∅
𝑐((⋅)) ∶ ∏

𝜎 ∈∑𝜎
𝑖LSig∅

𝑐 𝑛• 𝜎

→ Ty𝑖 ⋅
• L(𝜎)

𝑖
LSig∅

𝑐 0 𝜎 = {⋆}
𝑖
LSig∅

𝑐 (𝑛 + 1) 𝜎 = 𝑖
LSig∅

𝑐 𝑛 𝜈𝜋1(𝜎)

× ∑
𝐴 ∈Ty ⋅• 𝜈𝜋′1(𝜎)

Ty𝑖 (⋅
•,•(𝜈𝜋 ′

1(𝜎), 𝐴 )) 𝜈𝜋2(𝜎)

L∅
𝑐((… ∶ 𝑖

LSig∅
𝑐 0 …))(𝛾 •)(𝑜) = { ⋆ | 𝑜 ≡ 𝜇• }

L∅
𝑐(((𝑋 , (𝜎 , 𝐴 , 𝑇 )) ∶ 𝑖

LSig∅
𝑐 𝑛 + 1 …))(𝛾 •)(𝑜) = L∅

𝑐((𝜈𝜋1(𝑋), 𝜎 ))(𝛾 •)(𝜇𝜋1(𝑜))
× Tm (⋅•,•(𝜈𝜋 ′

1(𝜎), 𝐴 )) (𝜈𝜋2(𝜎), 𝑇 ) 𝜇𝜋2(𝑜)

Now we can interpret derivation and judgment.

JΓ ⊢𝑖 𝜎 LSig
𝑛K𝐶 is a dependent function ∶ ∏

𝛾 •∈Sub• ⋅• Γ•

𝑖
LSig∅

𝑐 J𝑛K•𝐶[𝛾
•]• 𝜎[𝛾]

JΓ ⊢ 𝑠[𝜎] LSig
𝑛K𝐶(𝛾

•) = J𝑠K𝐶(J𝜎K
•
𝐶∘

•𝛾 •)
JΓ ⊢ L(𝜎)K𝐶(𝛾

•) = L∅
𝑐((𝜎[𝛾] , J𝜎K𝐶(𝛾

•))) _

JΓ ⊢ 𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ) LSig
𝑛+1K𝐶(𝛾

•) = (J𝜎K𝐶(𝛾
•), J𝐴K•𝐶[𝛾

•] , J𝑇K•𝐶[𝛾
•↑] )

JΓ ⊢ 𝜈𝜋1(𝜎) LSig
𝑛K𝐶(𝛾

•) = J𝜎K𝐶(𝛾
•).0

JΓ ⊢ 𝜈𝜋 ′
1(𝜎)K𝐶(𝛾

•) = J𝜎K𝐶(𝛾
•).1()

JΓ, 𝜈𝜋 ′
1(𝜎) ⊢ 𝜈𝜋2(𝜎)K𝐶(𝛾

•) = J𝜎K𝐶(𝜋1
•𝛾 •).2(id•,• 𝜋2•𝛾 •)

JΓ ⊢ 𝜇• ∶ L(𝜈 •)K𝐶(𝛾 )(𝛾
′) = ⋆

JΓ ⊢ 𝜇+(ℓ, 𝑡) ∶ L(𝜈+(𝜎 ; 𝐴 ⊢ 𝑇 ))K𝐶(𝛾 )(𝛾
′) = (JℓK𝐶(𝛾 )(𝛾

′), J𝑡K•𝐶[𝛾
•↑] )

JΓ ⊢ 𝜇𝜋1(ℓ) ∶ L(𝜈𝜋1(𝜎))K𝐶(𝛾
•) = JℓK𝐶(𝛾

•).0
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JΓ, 𝜈𝜋 ′
1(𝜎) ⊢ 𝜇𝜋2(ℓ) ∶ L(𝜈𝜋1(𝜎))K𝐶(𝛾

•) = (JℓK𝐶(𝜋1
•𝛾 •)).1(id•,• 𝜋2•𝛾 •)

We have verified that this interpretation respects the equality/quotient in the syntax.
We can subsequently define
𝑖
LSig Γ• 𝑛 𝜎 ≔ ∏

𝛾 •∈Sub• ⋅• Γ•

𝑖
LSig∅

𝑐 J𝑛K•𝐶[𝛾
•]• 𝜎[𝛾] 𝑖

LSig
• Γ• 𝑛 ≔ ∑

Γ⊢𝑖𝜎 LSig
𝑛

𝑖
LSig 𝛾 • 𝑛 𝜎

, where for arbitrary Γ ⊢ 𝜎 LSig
𝑛, we have J𝜎K𝐶 ∈ 𝑖

LSig Γ• 𝑛 𝜎 and J𝜎K•𝐶 ∈ 𝑖
LSig

• Γ• 𝑛.

Interpreting Linkage Transformer.
For the linkage transformer, we will take a different strategy. We first inductively define two

indexed sets Inh• and ProjWk
• :

I
Id

• ∈ Inh
• Γ• 𝜎 • 𝜎 •

ℎ• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• 𝑡 • ∈ Tm

• (Γ•,• 𝐴•) 𝑇 •

I
Ext

•(ℎ•, 𝑡 •) ∶ Inh
• Γ• 𝜎 • 𝜈+•(𝜎 ′•, 𝐴•, 𝑇 •)

ℎ• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• 𝑇 • ∈ Ty

• (Γ•,• 𝐴•)
I
Inherit

•(ℎ•) ∈ Inh
• Γ• 𝜈+•(𝜎 •, 𝐴•, 𝑇 •) 𝜈+•(𝜎 ′•, 𝐴•, 𝑇 •)

ℎ• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• 𝑇 • ∈ Ty

• (Γ•,• 𝐴•) 𝑡 • ∈ Tm
• (Γ•,• 𝐴•,• 𝑇 •) 𝑇 •[(p1)•]•

I
Ov

1•(ℎ•, 𝑡 •) ∈ Inh
• Γ• 𝜈+•(𝜎 •, 𝐴•, 𝑇 •) 𝜈+•(𝜎 ′•, 𝐴•, 𝑇 •)

ℎ• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• 𝑡1• ∈ Tm

• (Γ•,• 𝐴1
•) 𝑇1

• 𝑡2• ∈ Tm
• (Γ•,• 𝐴2

•) 𝑇2
•

I
Ov

2•(ℎ•, 𝑡1•, 𝑡2•) ∈ Inh
• Γ• 𝜈+•(𝜎 •, 𝐴•,S•(𝑡1•)) 𝜈+•(𝜎 ′•, 𝐴•,S•(𝑡1•))

ProjWk
• 𝐴2

• 𝐴1
• ≔

{𝑓 • |
{(𝑀 •, 𝑓1

•, 𝑓2
•) | 𝑀 • ∈ Ty

• (Γ•,•𝐴1
•), 𝑓1

• ∈ Tm
• (Γ•,•Σ(𝐴1

•, 𝑀 •)) 𝐴2
•[p1],

𝑓2
• ∈ Tm

• (Γ•,•𝐴2
•) Σ(𝐴1

•, 𝑀 •)[(p1)•]•, 𝑓2
•[(p1)•,• 𝑓1

•]• ≡ var1
• 𝑓1

•[(p1)•, 𝑓2
•]• ≡ var1

•

𝑓 • ≡ fst var1[(p1)•,• 𝑓2
•]•}

}

ℎ• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• ↾• ∈ ProjWk

• 𝐴2
• 𝐴1

• ℎ0
• ∈ Inh

• Γ•,•𝐴2
• 𝜏1•[(p1)•,• ↾

•]• 𝜏2•
I
Nest

•(ℎ•, ↾•, ℎ0
•) ∈ Inh

• Γ• 𝜈+•(𝜎 •, 𝐴1
•,L•(𝜏1•)) 𝜈+•(𝜎 ′•, 𝐴2

•,L•(𝜏2•))

We can easily spot the similarity between these inductive rules and the syntax rules surrounding
Γ ⊢ (⋅) ∶ 𝜎 ↠ 𝜎 ′. In fact, we can consider this inductive type, as solely just the six constructors
I
Id, I Inherit(), I Ext(,), I Ov1(,), I Ov2(,,), I Nest(,,) , but working on 𝑆• instead of 𝑆.
The similarity induces the following function, defined by induction/patternmatching on Inh

• Γ• 𝜎 • 𝜎 ′•:

(⋅).⇂ ∶ ProjWk
• 𝐴1

• 𝐴1
• → { 𝑓 | ProjWk 𝐴2 𝐴1 𝑓 }

(⋅).⇂ ∶ Inh
• Γ• 𝜎 • 𝜎 ′• → { 𝑖 | Γ ⊢ 𝑖 ∶ 𝜎 ↠ 𝜎 ′ }

(⋅).⇂ formally connects 𝑖• ∈ Inh
• Γ• 𝜎 • 𝜎 ′• with its “syntax mirror” (𝑖•).⇂ ≡ Γ ⊢ 𝑖 ∶ 𝜎 ↠ 𝜎 ′. Just

as the notation suggests, we somehow have 𝑆•(the syntax and semantic compoenent) and 𝑆 (syntax
component). (Yet, we don’t have the definition for 𝑆 right now.)
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Since Inh
• Γ• 𝜎 • 𝜎 ′• is ultimately an inductive type, we can define the following 5 dependent

functions

_[⋅]• ∶ (𝑓 • ∈ ProjWk
• 𝐴2

• 𝐴1
•) → (𝛿 • ∈ Sub

• Δ• Γ•)
→ { 𝑓 ′• ∈ ProjWk

• (𝐴2
•[𝛿 •]•) (𝐴1

•[𝛿 •]•) | (𝑓 ′•).⇂ ≡ (𝑓 •).⇂ [𝛿] }
_[⋅]• ∶ (ℎ• ∈ Inh

• Γ• 𝜎1• 𝜎2•) → (𝛿 • ∈ Sub
• Δ• Γ•)

→ { ℎ′• ∈ Inh
• Δ• (𝜎1•[𝛿 •]

•) (𝜎2•[𝛿 •]
•) | (ℎ′•).⇂ ≡ (ℎ′•).⇂ [𝛿] }

inh
•((⋅), (⋅)) ∶ (𝑖• ∈ Inh

• Γ• 𝜎 • 𝜎 ′•) → (ℎ• ∈ Tm
• ⋅• L•(𝜎 •))

→ { 𝑡 • ∈ Tm
• ⋅• L•(𝜎 ′•) | 𝑡 ≡ inh((𝑖•).⇂ , ℎ) }

(⋅)∘•(⋅) ∶ (𝑖1• ∈ Inh
• Γ• 𝜎 • 𝜎 ′•) → (𝑖2• ∈ Inh

• Γ• 𝜎 ′• 𝜎″•)
→ { 𝑖3• ∈ Inh

• Γ• 𝜎 • 𝜎″• | (𝑖3•).⇂ ≡ (𝑖1•).⇂ ∘(𝑖2•).⇂ }
(⋅)⊕⟩•(⋅) ∶ (𝑖• ∈ Inh

• Γ• 𝜎1• 𝜎2•) → (𝑖′• ∈ Inh
• Γ• 𝜎1• 𝜎3•)

→ { (𝜎4•, 𝑖3•, 𝑖4•) | (𝜎4, (𝑖3•).⇂ , (𝑖4•).⇂ ) ≡ (𝑖•).⇂ ⊕⟩ (𝑖′•).⇂ }

, by induction/pattern matching on Inh
• (⋅) (⋅) (⋅). Most importantly, they respect the “syntax mirror”

(⋅).⇂ . The definition of these 5 functions directly come from their beta equations indicated in the
syntax. In fact, those beta equations cover all possible cases, and give a complete definition (as we
are using intrinsic typing).

Finally, we can define 𝑆 :

ProjWk 𝐴2
• 𝐴1

• 𝑓 ≔ { 𝑓 • ∈ ProjWk
• 𝐴2

• 𝐴1
• | 𝑓 ≡ (𝑓 •).⇂ }

Inh Γ• 𝜎1• 𝜎2• ℎ ≔ { 𝑖0• ∈ Inh
• Γ• (𝜎1•) (𝜎2•) | ℎ ≡ (𝑖0•).⇂ }

In the previous model constructions for linkage and signatures, we always define the semantic
component 𝑆 and then define their combination 𝑆•. However, when dealing with linkage trans-
former, we take another route, by first defining 𝑆• and its syntax componenet (𝑆•).⇂ , then we use
set comprehension (subset) to construct 𝑆 . It is easy to prove Inh• Γ• 𝜎1• 𝜎2• ≅ ∑ℎ Inh Γ• 𝜎1• 𝜎2• ℎ.

Now we interpret judgments and derivations around linkage transformer.

JProjWk 𝐴2 𝐴1 𝑓K𝐶 ∶ ProjWk J𝐴2K
•
𝐶 J𝐴1K

•
𝐶 𝑓

JΓ ⊢ ℎ ∶ 𝜎1 ↠ 𝜎2K𝐶 ∶ Inh JΓK•𝐶 J𝜎1K
•
𝐶 J𝜎2K

•
𝐶 ℎ

JΓ ⊢ I
Id ∶ … ↠ …K𝐶 = I

Id
•

JΓ ⊢ I
Ext(ℎ, 𝑡) ∶ … ↠ …K𝐶 = I

Ext
•(JℎK𝐶, J𝑡K

•
𝐶)

JΓ ⊢ I
Inherit(ℎ) ∶ … ↠ …K𝐶 = I

Inherit
•(JℎK𝐶)

JΓ ⊢ I
Ov

1(ℎ, 𝑡) ∶ … ↠ …K𝐶 = I
Ov

1•(JℎK𝐶, J𝑡K
•
𝐶)

JΓ ⊢ I
Ov

2(ℎ, 𝑡1, 𝑡2) ∶ … ↠ …K𝐶 = I
Ov

2•(JℎK𝐶, J𝑡1K
•
𝐶, J𝑡2K

•
𝐶)

JΓ ⊢ I
Nest(ℎ, ↾, ℎ0) ∶ … ↠ …K𝐶 = I

Nest
•(JℎK𝐶, J↾K

•
𝐶, Jℎ0K𝐶)

JΓ ⊢ inh(ℎ, 𝑎) ∶ …K𝐶 = inh
•(JℎK𝐶, J𝑎K

•
𝐶)

JΓ ⊢ ℎ1 ∘ ℎ2 ∶ … ↠ …K𝐶 = Jℎ1K𝐶∘
•Jℎ2K𝐶

Jℎ1 ⊕⟩ ℎ2K𝐶 = Jℎ1K𝐶⊕⟩
•Jℎ2K𝐶
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JΔ ⊢ ℎ[𝛿] ∶ … ↠ …K𝐶 = JℎK𝐶[J𝛿K
•
𝐶]

•

We have verified that this interpretation respects the equality/quotient in the syntax, surrounding
those linkage transformer.

The interpretation is trivially mapping the quotiented syntax to the highly-similar non-quotient
inductive type we just defined. The triviality of this interpretation should reminisce the fact that,
linkage transformer itself has limited interaction with the core calculus and can be considered as
an external library out of the core calculus as in Jin et al. [27]. In FMLTT2.0, we move it into the
core calculus simply because the existential linkage type L+(𝜎) requires linkage transformer, while
L+(𝜎) cannot be encoded outside of core calculus.

Interpreting Existential Linkage Type.

JΓ ⊢𝑖+1 L+(𝜎)K𝐶(𝛾 )(𝛾
′)(𝑜) = {𝑁 •, 𝜎 ′•, ℎ•, 𝑜𝑖• | 𝑜 ≡ iL

+(𝑁 , 𝜎 ′, ℎ, 𝑜𝑖) }
where 𝑁 • ∈ Nat

• ⋅•, 𝜎 ′• ∈ 𝑖
LSig

• ⋅• 𝑁 •, ℎ• ∈ Inh
• ⋅• (J𝜎K•𝐶[𝛾

•]•) 𝜎 ′•,
𝑜𝑖• ∈ Tm

• ⋅• L•(𝜎 ′•)
JΓ ⊢ iL

+(𝑁 , 𝜎 ′, ℎ, 𝑜𝑖) ∶ L+(𝜎)K𝐶(𝛾 )(𝛾
′) = (J𝑁K•𝐶[𝛾

•]• , J𝜎 ′K•𝐶[𝛾
•]• , JℎK•𝐶[𝛾

•]• , J𝑜𝑖K
•
𝐶[𝛾

•]•)

JΓ ⊢ 𝑜.size NatK𝐶(𝛾
•) = ((J𝑜K𝐶(𝛾

•)).0) ()

JΓ ⊢ 𝑜.sig LSig
𝑜.sizeK𝐶(𝛾

•) = ((J𝑜K𝐶(𝛾
•)).1) ()

JΓ ⊢ 𝑜.inh ∶ 𝜎 ↠ 𝑜.sigK𝐶(𝛾
•) = ((J𝑜K𝐶(𝛾

•)).2) ()

JΓ ⊢ eL
+(𝑜) ∶ L(𝜎)K𝐶(𝛾

•) = ((J𝑜K𝐶(𝛾
•)).3) ()

We have verified that this interpretation respects the equality/quotient in the syntax, surrounding
those existential linkage type L+(𝜎).

Interpreting W-type. For W-type, we take a similar approach as dealing with linkage transformer.
We first define

𝑗
WSig

• Γ• 𝑛 ≔ Vector
𝑛 ∑

𝐴•∈Ty•𝑗 Γ•
Ty

•
𝑗 (Γ

•,• 𝐴•)

(⋅).⇂ ∶ 𝑗
WSig

• Γ• 𝑛 → { 𝜏 | Γ ⊢𝑗 𝜏 WSig
𝑛 }

({(𝐴𝑖
•, 𝑇𝑖

•)}).⇂ ≔ w
+(w+(…w+(w•, 𝐴1, 𝑇1)…, 𝐴𝑛−1, 𝑇𝑛−1), 𝐴𝑛, 𝑇𝑛)

𝑗
WSig Γ• 𝑛 𝜏 ≔ {𝑤 • | (𝑤 •).⇂ ≡ 𝜏 }

, where Vector
𝑛 is a list with length 𝑛.

Similarly, we first define 𝑆• and its syntax componenet (𝑆•).⇂ , then we use set comprehension
(subset type) to construct 𝑆 . It is easy to prove 𝑗

WSig
• Γ• 𝑛 ≅ ∑𝜏

𝑗
WSig Γ• 𝑛 𝜏.

Now we interpret the judgments and derivations.

JΓ ⊢𝑗 𝜏 WSig
𝑛K

𝐶
∶ 𝑗

WSig JΓK•𝐶 𝑛 𝜏

i.e., a list of 2-tuple of length 𝑛, with syntax on
JΓ ⊢ w

•
WSig

0K𝐶 = nil
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JΓ ⊢ w
+(𝜏 , 𝐴, 𝐵) WSig

𝑛+1K𝐶 = (J𝐴K•𝐶, J𝐵K•𝐶) ∶∶ J𝜏K𝐶
JΓ ⊢ 𝜏[𝛾] WSig

𝑛K𝐶 is done by point-wise/component-wise substitution

w𝜋 𝑗
1

•
(𝜏 •) = ( 𝑗-th element of 𝜏 •)[0]

JΓ ⊢ w𝜋 𝑗
1(𝜏 )K𝐶 = w𝜋 𝑗

1

•
(J𝜏K•𝐶)

w𝜋 𝑗
2

•
(𝜏 •) = ( 𝑗-th element of J𝜏K•𝐶)[1]

JΓ, w𝜋 𝑗
1(𝜏 ) ⊢ w𝜋 𝑗

2(𝜏 )K𝐶 = w𝜋 𝑗
2

•
(𝜏 •)

JΓ ⊢ w
−(𝜏 ) WSig

𝑛K𝐶 = tl J𝜏K𝐶

Next we can interpret the related terms and types for W-type.

JΓ ⊢ W(𝜏 ) ∶ UK𝐶(𝛾 )(𝛾
′)(𝑡) = W 𝐶 (J𝜏K•𝐶[𝛾

•]•) 𝑡

JΓ ⊢ Wsup𝑖(𝜏 , 𝑎, 𝑏) ∶ El(W(𝜏 ))K
𝐶
(𝛾 )(𝛾 ′) = W C sup 𝑖 (J𝑎K•𝐶[𝛾

•]•) (J𝑏K•𝐶[𝛾
↑•]•)

CaseTy
•(𝐴•, 𝐵•, 𝑅•) = Π•(𝐴•, Π•(Π•(𝐵•, 𝑅•[(p2)•]•), 𝑅•[(p2)•]•))

JΓ ⊢ CaseTy(A, B, R)K𝐶 = (CaseTy•(JAK•𝐶, JBK
•
𝐶, JRK

•
𝐶))

we define RecSig(, ) by induction on the signature, via 𝑅𝑆•

𝑅𝑆• nil 𝑅 = J𝜈 •K•𝐶
𝑅𝑆• ((𝐴, 𝐵) ∶∶ 𝑡𝑙) 𝑅 = 𝜈+•(𝑅𝑆• 𝑡 𝑙 𝑅, 𝜋2•, CaseTy•(𝐴, 𝐵, 𝑅))
JΓ ⊢ RecSig(𝜏 , R)K𝐶 = 𝑅𝑆 J𝜏K𝐶 JRK𝐶

R𝜋 𝑗 (ℓ•) = take the 𝑗-th field from ℓ•

JR𝜋 𝑗(ℓ)K𝐶 = R𝜋 𝑗•(JℓK•𝐶)

JΓ ⊢ Wrec(𝜏 , ℓ, 𝑡) ∶ 𝑇K𝐶(𝛾 )(𝛾
′) = W C rec J𝜏K•𝐶[𝛾

•]•

(𝜆𝑤.JRK𝐶(𝛾 )(𝛾
′)(Wrec(𝜏[𝛾], ℓ[𝛾], 𝑤)))

𝑓 𝑟

𝑡[𝛾]
(J𝑡K𝐶(𝛾 )(𝛾

′))

where 𝑓 𝑟 𝑗 𝑎• 𝑏 𝑏𝑐 = let 𝜌• ∈ Tm
• (⋅• ,• 𝐵•[id•,• 𝑎•]• ) (𝑅•[𝛾 •]•[(p9)•]•)

s.t. 𝜌• ≔ (Wrec(𝜏 , ℓ[𝛾 ∘ p1], 𝑏), 𝑏𝑐) in

app
•( app

•( R𝜋 𝑗•(JℓK•𝐶[𝛾
•]•) ) [id•,• 𝑎•]• ) [id•,• 𝜆•(𝜌•) ]

•
(𝜖)(⋆)

given Γ ⊢ ℓ ∶ RecSig(𝜏 , R)

where 𝑅• = JRK•𝐶, 𝐵
• = w𝜋 𝑗

2

•
(J𝜏K•𝐶)
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Notice these constructions rely on the inductive defined set W 𝐶, its constructor W C sup and its
eliminator W C rec, which we will show in the following. These three concepts are defined using the
inductive facility in the ambient logic. For example, the interpretation of Wsup𝑖(𝜏 , 𝑎, 𝑏) is defined
using W C sup, taking three arguments as input: 𝑖, a glued (J𝑎K•𝐶[𝛾

•]•) and a glued (J𝑏K•𝐶[𝛾
↑•]•). As

mentioned earlier, 𝛾 • is an equivalent form of (𝛾 , 𝛾 ′).
Finally, we show how W 𝐶, W C sup and W C rec are defined.
(Note: we also use (𝑎 ∈ 𝐴 → 𝐵(𝑎)) as another notation for dependent function ∏𝑎∈𝐴 𝐵(𝑎)).

Inductive W 𝐶 ∶ (𝜏 • ∈ 𝑖
WSig

• J⋅K•𝐶 𝑁) → { 𝑡 | ⋅ ⊢ 𝑡 ∶ El(W(𝜏 )) } → Set𝑖+1 where

W C sup ∶ 𝑗 < 𝑁 → 𝑎• ∈ Tm
• ⋅• w𝜋 𝑗

1

•
(𝜏 •)

→ 𝑏• ∈ (Tm• (⋅• ,• w𝜋 𝑗
2

•
(𝜏 •)[id•, 𝑎•]• ) El

•(W•(𝜏 •))[(p1)•]• )

→ W 𝐶 𝜏 • Wsup𝑗(𝜏 , 𝑎, 𝑏)

and its eliminator W C rec

W C rec ∶ (𝜏 • ∈ 𝑖
WSig

• J⋅K•𝐶 𝑁) → (𝑃 ∶ { 𝑡 | ⋅ ⊢ 𝑡 ∶ El(W(𝜏 )) } → Set𝑘)

→ (𝑗 < 𝑁 → 𝑎• ∈ Tm
• ⋅• w𝜋 𝑗

1

•
(𝜏 •)

→ { 𝑏 | (⋅, w𝜋 𝑗
2(𝜏 )[id, 𝑎] ) ⊢ 𝑏 ∶ El(W(𝜏 ))[p1] }

→ (𝛾 • ∈ Sub
• ⋅• (⋅• ,• w𝜋 𝑗

2

•
(𝜏 •)[id•,• 𝑎•] ) → 𝑃 (𝑏[𝛾]))

→ 𝑃 (Wsup𝑗(𝜏 , 𝑎, 𝑏)))

→ ⋅ ⊢ 𝑡 ∶ El(W(𝜏 )) → W 𝐶 𝜏 • 𝑡 → 𝑃 𝑡
W C rec 𝜏 • 𝑃 𝑓 𝑡 (W C sup 𝑎• 𝑏•) = 𝑓 𝑎• 𝑏 (𝜆𝛾 •.W C rec 𝜏 • 𝑃 𝑓 (𝑏[𝛾]) (𝑏 𝛾 •))

Note that in W C sup, the 𝑏• uses the definition of JW(𝜏 )K𝐶, which after unfolding, recursively
references W 𝐶 in a strictly positive position. We do not distinguish (𝑏, 𝑏𝑐) and 𝑏• for simplicity.

The idea of the proof of W-type is, as mentioned, mirroring the facility of the inductive type in
the ambient logic into FMLTT2.0. The main difference between W 𝐶 in the ambient logic and W(⋅) in
the FMLTT2.0, is that W 𝐶 is only witnessing those reducible closed terms. Thus when using W 𝐶 to
model W(⋅), we need to do closed substitution properly.

Again, we omit validating that our model respects the equational/quotient rules (𝛽, 𝜂, and
substitution) here.

Now, our fundamental theorem can cover the whole FMLTT2.0.

Theorem 6 (Fundamental Theorem for FMLTT2.0). If Γ ⊢ 𝑡 ∶ 𝑇, then its semantic interpretation
is a dependent function such that J𝑡K𝐶 ∶ ∏⋅⊢𝛾∶Γ ∏𝛾 ′∈JΓ⊢K𝐶(𝛾 )

JΓ ⊢ 𝑇K𝐶(𝛾 )(𝛾
′)(𝑡[𝛾]).

A.3.6 Canonical Forms in FMLTT2.0. Besides the canonical forms for B (e.g. tt and ff), we also
have the following canonical forms for other type:

Theorem 7 (Canonical Forms).
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• If ⋅ ⊢ 𝑡 ∶ El(W(𝜏 )) and ⋅ ⊢ 𝜏 WSig
𝑛, then ⋅ ⊢ 𝑡 ≡ Wsup𝑗(𝜏 , 𝑎, 𝑏) ∶ El(W(𝜏 )) for some ⋅ ⊢ 𝑎 ∶ 𝐴,

𝐵[(id, 𝑎)] ⊢ 𝑏 ∶ El(W(𝜏 )), and 𝑗 < 𝑛
• If ⋅ ⊢ 𝑡 ∶ B then ⋅ ⊢ 𝑡 ≡ tt ∶ B or ⋅ ⊢ 𝑡 ≡ ff ∶ B
• If ⋅ ⊢ 𝑡 ∶ L(𝜈 •) then ⋅ ⊢ 𝑡 ≡ 𝜇• ∶ L(𝜈 •)
• If ⋅ ⊢ 𝑡 ∶ L(𝜎) with ⋅ ⊢ 𝜎 LSig

𝑛, then ⋅ ⊢ 𝑡 ≡ 𝜇+(𝑜, 𝑡) ∶ L(𝜎) for some ⋅ ⊢ 𝑜 ∶ L(𝜇𝜋1(𝜎)) and
𝜈𝜋 ′

1(𝜎) ⊢ 𝑡 ∶ 𝜇𝜋2(𝜎)
• If ⋅ ⊢ 𝑡 ∶ Σ(𝐴, 𝐵) then ⋅ ⊢ 𝑡 ≡ (𝑎, 𝑏) ∶ Σ(𝐴, 𝐵) with ⋅ ⊢ 𝑎 ∶ 𝐴 and ⋅ ⊢ 𝑏 ∶ 𝐵[(id, 𝑎)]

A.4 Compile Linkage to Module in FMLTT2.0

The structure of linkage in FMLTT2.0 is flexible enough such that every field can be arbitrarily
modified, as it is ultimately just a list of terms. However, it is far from the programming interface
provided by Rocqet, where the programmer mainly interact with the compiled module of the
linkage.

In this section, we show how such compilation procedure can be encoded in FMLTT2.0: we
will introduce several new constructs like Seals, P(⋅), p(⋅), that are based on the core calculus of
FMLTT2.0.

We start by defining two (dependent) functions Seals and P(⋅, ⋅) mutually recursively. They all
take derivations of (different) judgments as input, but Seals will output new judgment while P(⋅, ⋅)
will out put new types. They are inductively defined, based on the length of the linkage signature,
which we restrict7 to natural numbers 𝑛 ∈ N ≅ { 𝑥 | ⋅ ⊢ 𝑥 Nat } due to the canonicity result.

Moreover, we have 𝑛 ∈ N ↦ 𝑛[𝜖] ∈ { 𝑥 | Γ ⊢ 𝑥 Nat }, sowewill consider 𝑛 ∈ N ⊆ { 𝑥 | Γ ⊢ 𝑥 Nat }
for simplicity. For notational simplicity, we will also omit some arguments when using these two
functions.

Seals ∶ ∀(𝑛 ∶ N), { 𝜎 | Γ ⊢𝑖 𝜎 LSig
𝑛 } → Set

P(⋅) ∶ ∀(𝑛 ∶ N), { 𝜎 | Γ ⊢𝑖 𝜎 LSig
𝑛 } → Seals(𝜎) → {𝐴 | Γ ⊢𝑖 𝐴 }

Seals({𝑛 = 0}, 𝜎) = {⋆}

Seals({𝑛 = 𝑛′ + 1}, 𝜎) = ∑
sls∶Seals(𝜈𝜋1(𝜎))

{ 𝑡 | Γ,P(𝜈𝜋1(𝜎), sls) ⊢ 𝑡 ∶ 𝜈𝜋 ′
1(𝜎)[p1] }

P({𝑛 = 0}, 𝜎 , _) = ⊤
P({𝑛 = 𝑛′ + 1}, 𝜎 , (S, 𝑓 )) = Σ(P(𝜈𝜋1(𝜎), S) , 𝜈𝜋2(𝜎)[p1, 𝑓])

By inspection, we can see P(⋅) is a deeply nested existential type, which represents Rocq modules.
Similarly, we will construct the compilation procedure p(⋅), inductively on the (literal) length of
the signature:

p(⋅) ∶ ∀(𝑛 ∶ N), { 𝜎 | Γ ⊢𝑖 𝜎 LSig
𝑛 } → Seals(𝜎) → { 𝑡 | Γ ⊢ 𝑡 ∶ L(𝜎) } → { 𝑡′ | Γ ⊢ 𝑡′ ∶ P(𝜎) }

p({𝑛 = 0}, 𝜎 , _, _) =()
p({𝑛 = 𝑛′ + 1}, 𝜎 , (S, 𝑓 ), 𝑡) = (𝑢, 𝜇𝜋2(𝑡)[id, 𝑓[id, 𝑢]])

where 𝑢 = p(𝜈𝜋1(𝜎), S, 𝜇𝜋1(𝑡))

7That means these two functions can only work on linkage with literal length. They cannot handle dynamic length like
Γ ⊢ 𝜎.size Nat. Thus, these two functions can handle closed signature/linkages, and open signature/linkage with known
length.



50 Oghenevwogaga Ebresafe, Ian Zhao, Ende Jin, Arthur Bright, Charles Jian, and Yizhou Zhang

Recall that a given signature 𝜎𝑛 is a list of types {𝐴𝑖 ⊢ 𝑇𝑖}𝑖≤𝑛, so we have a list of signatures as
well 𝜎1, 𝜎2, .., 𝜎𝑖 each indicating first 𝑖 fields in the signature 𝜎𝑛. Intuitively, P(𝜎𝑖) computes a specific
nested Sigma type and Seals (𝜎𝑖) shows how to map from P(𝜎𝑗) to 𝐴𝑗 for each 𝑗 < 𝑖.

Also recall that ℓ ∈ P(𝜎𝑛) is intuitively a list of terms { 𝑡𝑖 | Γ, 𝐴𝑖 ⊢ 𝑡𝑖 ∶ 𝑇𝑖 }. Then utilizing those
mappings in sls ∶ Seals(𝜎𝑖) and the list of terms in ℓ ∈ P(𝜎𝑖), we can instantiate each 𝐴𝑖 and get a
term p(ℓ, sls) of the deeply nested Sigma type P(𝜎 , sls).

B Using FMLTT2.0 to Model Families and Inheritance
B.1 Example: Linkage encoding in FMLTT2.0

The above formulation of compilation might be too abstract. Here we give a concrete example on
a family and its compilation to modules in FMLTT2.0. This example is (the skeleton of) the base
STLC family, which includes an inductive type and recursion and one normal fields utilizing the
recursion function.

This example forms as a template as how FMLTT2.0 can encode Rocqet’s family facility. Our
example will use named syntax for readability. We will show the derivation in between the Rocq
code.
Family Λ→

.

Λ→
.0 = ⊢ 𝜇• ∶ L(𝜈 •)

FInductive tm : Set ^:= | tm_unit : tm | tm_abs : id → tm → tm.

Λ→
.1 = ⊢ 𝜇+(Λ→

.0, ⋆) ∶ L(𝜈+(…; ⊤ ⊢ W(𝜏1)))
FRecursion subst ^^...

Λ→
.2.0 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇• ∶ L(𝜈 •)

Case tm_unit ^:= λ x t. tm_unit

Λ→
.2.1 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇+(Λ→

.2.0, 𝜆 𝑥 𝑡.tm.unit) ∶ L(𝜈+(…; ⊤ ⊢ CaseTy(…, ,ℛ)))
Case tm_lam ^:= λ x t. ^^...

Λ→
.2.2 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇+(Λ→

.2.1, …) ∶ L(𝜈+(…; ⊤ ⊢ CaseTy(…, ,ℛ)))
End subst.

Λ→
.2 = ⊢ 𝜇+(Λ→

.1, Λ→
.2.2) ∶ L(𝜈+(…; ℐ 𝑐(𝜏1) ⊢ RecSig(𝜏1,ℛ)))

Λ→
.3.0 = {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ ⊢ ⋆ ∶ S(𝜆 𝑤.Wrec(𝜏1, rL, 𝑤))

Λ→
.3 = ⊢ 𝜇+(Λ→

.2, Λ→
.3.0) ∶ L(𝜈+(…; {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ ⊢ S(𝜆 𝑤.Wrec(…, …, 𝑤))))

FDefinition test ^:= subst tm_unit "v" tm_unit.

Λ→
.4.0 = {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ R(tm.unit,‶ 𝑣‶, tm.unit) ∶ tm

Λ→
.4 = ⊢ 𝜇+(Λ→

.3, Λ→
.4.0) ∶ L(𝜈+(…; {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ tm))

End Λ→
.

Λ→ = Λ→
.4

Some comments are needed for explaining notation and this linkage construction.

(1) We use {…}Σ as an easy shorthand for dependent pairs.
For example {tm ∶ U, tm_unit ∶ tm, tm_abs ∶ ident → tm → tm}Σ is exactly
Σ(tm ∶ U, Σ(tm_unit ∶ tm, ident → tm → tm)), a type supports two constructors tm_unit

and tm_abs.
(2) 𝜏1 is the W-type signature of an inductive type with only two constructors, tm_unit and

tm_abs. For this example, 𝜏1 = w
+(w+(w•, ⊤, ⊥), ident, ⊤)
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(3) ℐ 𝑐(𝜏1) is the inductive type without exposing its eliminator. In other words, ℐ 𝑐(𝜏1) ≅
{tm ∶ U, tm_unit ∶ tm, tm_abs ∶ ident → tm → tm}Σ. We automatically have W(𝜏 ) → ℐ 𝑐(𝜏 )
for arbitrary 𝜏.

(4) Compared to W(𝜏1), ℐ 𝑐(𝜏1) does not have recursor; while we can recurse on a term of 𝑡 ∶
tm ∶ S(W(𝜏1)) using Wrec(𝜏1, ⋅, .)

(5) Compared to W(⋅), ℐ 𝑐(⋅) has a mapping between related inductive signatures. For example, if
𝜏2 = w

+(𝜏1, ⊤, ⊥) to support tm_true constructor, then we will have a map ℐ 𝑐(𝜏2) → ℐ 𝑐(𝜏1),
which maps out the two of the constructors and the type in ℐ 𝑐(𝜏2).

(6) ℛ is short for a type of the form ident → tm → tm. So tm → ℛ is exactly the signature of
substitution

To make this example more readable, we focus on the type and signature of our linkage to draw a
big picture on the components of the encoding. We also use {⋅}Sig to indicate the linkage signature.

We have ⋅ ⊢ Λ→ ∶ L(𝜎→), where

𝜎→ = {tm ∶ ⊤ ⊢ S(W(𝜏1));
rL ∶ {tm ∶ ℐ 𝑐(𝜏1)}Σ ⊢ RecSig(𝜏1, tm → ℛ)
subst ∶ {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ ⊢ S(𝜆 𝑤.Wrec(𝜏1, rL, 𝑤))
test ∶ {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ tm

}Sig

Some more remarks on this linkage encoding in FMLTT2.0:
(1) To construct a recursive function, we always split the definition of case handlers (e.g., rL) and

the utilization of eliminators (e.g., subst using Wrec(⋅, ⋅, )) into two fields. Because the former
can be considered as normal fields for further code reuse and inheritance, while the later
is closely related to a particular inductive type W(𝜏 ), and cannot be reused once inductive
signature is changed.

(2) When defining inductive type (e.g., tm) and utilizing eliminator (e.g., subst), we always make
the definition of these fields explicit at type level using singleton type S(⋅). This is for later
extension—the extension of these two kinds of fields are encoded using I

Ov
2(⋅, ⋅, ⋅). In other

words, there is no internal structure of inductive type and the utilization of eliminator that can
be reused—during inheritance, we simply replace them using enriched fields. This behavior
is aligned with the implementation of Rocqet—to type-check an extended inductive type, the
only way is to reflect the source code and manually add new constructors and re-type-check
all the constructors.

(3) The case handlers (e.g., rL) can be fully reused since they are not closely related to any
particular inductive type. Particularly, they can be reused when 𝜏1 is extended to w

+(𝜏1, …, …).
(4) For other normal fields (i.e., those fields that are not inductive type definition or using

eliminators) (e.g., rL and test), they will abstract prior fields by treating prior inductive type
definition as ℐ 𝑐(𝜏 ) and prior recursive functions as normal functions (e.g., {tm ∶ ℐ 𝑐(𝜏1), R ∶
tm → ℛ}). This makes these fields (e.g., rL and test) reusable in extended inductive definition
because we have a map ℐ 𝑐(w+(𝜏 , …, …)) → ℐ 𝑐(𝜏 ).

B.2 Example : Compilation encoding in FMLTT2.0

Now we are clear about how FMLTT2.0 encodes some basic family examples, we will construct a
sealing 𝑓 ∶ Seals(𝜎→) to show our linkage encoding can be compiled to a module (Sigma type).
At the same time, we will have P(𝜎→, 𝑓) to see the final module signature of the compilation.
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We will denote 𝜎→
𝑖 as the signature of first 𝑖 fields. And we can do the following computation

Seals(𝜎→
1 ) = ∑

𝑓0∈{⋆}
{ 𝑡 | ⊢ 𝑡 ∶ ⊤ }

where 𝑓1 = (⋆, ⊢ () ∶ ⊤) ∈ Seals(𝜎→
1 )

P(𝜎→
1 , 𝑓1) = {_ ∶ ⊤, tm ∶ S(W(𝜏1))}Σ

Seals(𝜎→
2 ) = ∑

𝑓1∈Seals(𝜎→1 )
{ 𝑡 | P(𝜎→

1 , 𝑓1) ⊢ 𝑡 ∶ ℐ 𝑐(𝜏1) }

where 𝑓2 = (𝑓1,P(𝜎→
1 , 𝑓1) ⊢ ⟨tm, …⟩ ∶ ℐ 𝑐(𝜏1)) ∈ Seals(𝜎→

2 )
P(𝜎→

2 , 𝑓2) = {_ ∶ ⊤, tm ∶ S(W(𝜏1)), rL ∶ RecSig(𝜏1, tm → ℛ)}Σ

Seals(𝜎→
3 ) = ∑

𝑓2∈Seals(𝜎→2 )
{ 𝑡 | P(𝜎→

2 , 𝑓2) ⊢ 𝑡 ∶ {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ }

where 𝑓3 = (𝑓2,P(𝜎→
2 , 𝑓2) ⊢ ⟨tm, rL⟩ ∶ …) ∈ Seals(𝜎→

3 )
P(𝜎→

3 , 𝑓3) = {_ ∶ ⊤, tm ∶ S(W(𝜏1)), rL ∶ RecSig(𝜏1, tm → ℛ), subst ∶ S(𝜆 𝑤.Wrec(𝜏1, rL, 𝑤))}Σ

Seals(𝜎→
4 ) = ∑

𝑓3∈Seals(𝜎→3 )
{ 𝑡 | P(𝜎→

3 , 𝑓3) ⊢ 𝑡 ∶ {tm ∶ ℐ 𝑐(𝜏1), subst ∶ tm → ℛ}Σ }

where 𝑓4 = (𝑓3,P(𝜎→
3 , 𝑓3) ⊢ ⟨tm, subst⟩ ∶ …) ∈ Seals(𝜎→

4 )
P(𝜎→

4 , 𝑓4) = {…, tm ∶ S(W(𝜏1)), rL ∶ RecSig(𝜏1, tm → ℛ), subst ∶ S(𝜆 𝑤.Wrec(𝜏1, rL, 𝑤)), test ∶ tm}Σ

Most 𝑓𝑖 are simply just picking correct terms from the context; when inductive type is involved,
we also need to pick and abstract corresponding constructors. So in Rocqet implementation, the
construction of 𝑓𝑖 is automatic.

The compilation result has the type P(𝜎→
4 , 𝑓4), carrying information as we expect.

B.3 Example: Nested Inheritance encoding in FMLTT2.0

Here we show how our FMLTT2.0 encodes a more complete example in Rocqet—we focus on four
families, base STLC family, two extension on tuple and boolean respectively, and their composition.
These four families are group into two families. The first base family has been illustrated in the
earlier sealing example. For the sake of presentation simplicity, some of the derivations might be
omitted and inferrable according to the context. In the derivation, we still use named convention
for better readability.

We will show the derivation in between the code.
Family Λ1

.(* The first language family, includes arrow and boolean type. *)
Family Λ→

.

Λ→
.0 = ⊢ 𝜇• ∶ L(𝜈 •)

FInductive tm : Set ^:= | tm_unit : tm | tm_abs : id → tm → tm.

Λ→
.1 = ⊢ 𝜇+(Λ→

.0, ⋆) ∶ L(𝜈+(…; ⊤ ⊢ W(𝜏1)))
FRecursion subst ^^...

Λ→
.2.0 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇• ∶ L(𝜈 •)

Case tm_unit ^:= λ x t. tm_unit

Λ→
.2.1 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇+(Λ→

.2.0, 𝜆 𝑥 𝑡.tm.unit) ∶ L(𝜈+(…; ⊤ ⊢ CaseTy(…, ,ℛ)))
Case tm_lam ^:= λ x t. ^^...

Λ→
.2.2 = tm ∶ ℐ 𝑐(𝜏1) ⊢ 𝜇+(Λ→

.2.1, …) ∶ L(𝜈+(…; ⊤ ⊢ CaseTy(…, ,ℛ)))
End subst.
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Λ→
.2 = ⊢ 𝜇+(Λ→

.1, Λ→
.2.2) ∶ L(𝜈+(…; ℐ 𝑐(𝜏1) ⊢ RecSig(𝜏1,ℛ)))

Λ→
.3.0 = {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ ⊢ ⋆ ∶ S(𝜆 𝑤.Wrec(𝜏1, rL, 𝑤))

Λ→
.3 = ⊢ 𝜇+(Λ→

.2, Λ→
.3.0) ∶ L(𝜈+(…; {tm ∶ S(W(𝜏1)), rL ∶ L(RecSig(𝜏1,ℛ))}Σ ⊢ S(𝜆 𝑤.Wrec(…, …, 𝑤))))

FDefinition test ^:= subst tm_unit "v" tm_unit.

Λ→
.4.0 = {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ R(tm.unit,‶ 𝑣‶, tm.unit) ∶ tm

Λ→
.4 = ⊢ 𝜇+(Λ→

.3, Λ→
.4.0) ∶ L(𝜈+(…; {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ tm))

End Λ→
.

Λ→ = Λ→
.4

Λ1
.1 = ⊢ 𝜇+(Λ→

.0, Λ→) ∶ 𝜈+(𝜈 •; ⊤ ⊢ L(…))
Family ΛB

extends Λ→
.

FInductive tm : Set ^:= | tm_true .

IB .1 = ⊢ I
Ov

2(I Id, W(𝜏1), W(𝜏2)) ∶ (Λ→
.1)𝜎 ↠ 𝜈+(𝜈 •; ⊤ ⊢ S(W(𝜏2)))

FRecursion subst.

IB .2.0 = tm ∶ ℐ 𝑐(𝜏2) ⊢ I
Id ∶ (Λ→

.2)𝜎 ↠ (Λ→
.2)𝜎

Case tm_true ^:= λ x t. tm_true.

IB .2.1 = tm ∶ ℐ 𝑐(𝜏2) ⊢ I
Ext(IB .2.0, 𝜆 _ _.tm.true) ∶ (Λ→

.2)𝜎 ↠ 𝜈+(…; ⊤ ⊢ CaseTy(…, …,ℛ))
End subst.

IB .2 = ⊢ I
Nest(IB .1, …, IB .2.1) ∶ (Λ→

.2)𝜎 ↠ 𝜈+(…; ℐ 𝑐(𝜏2) ⊢ L(RecSig(𝜏2,ℛ)))

IB .3 = ⊢ I
Ov

2(IB .2, {tm ∶ S(W(𝜏2)), rL ∶ L(RecSig(𝜏2,ℛ))}Σ, 𝜆 𝑤.Wrec(𝜏2, rL, 𝑤)) ∶ (Λ→
.3)𝜎 ↠ 𝜈+(…; … ⊢ …)

(* Field test inherited. *)

IB .4 = ⊢ I
Inherit(IB .3) ∶ (Λ→

.4)𝜎 ↠ 𝜈+(…; {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ tm)
End ΛB

.

ΛB = ℓ ∶ L+((Λ→
.4)𝜎) ⊢ inh

⊕⟩(IB .4, ℓ) ∶ L(𝒮⊕⟩(ℓ.inh, IB .4))
End Λ1

.

Λ1 = ⊢ 𝜇+(Λ1
.1, ΛB) ∶ 𝜈+(…; ℓ ∶ L+((Λ→

.4)𝜎) ⊢ L(𝒮⊕⟩(ℓ.inh, IB .4)))
Family Λ2

extends Λ1
. (* We will extend language with pair/tuple here. *)

I2 .0 = ⊢ I
Id ∶ 𝜈 • ↠ 𝜈 •

Family Λ→
. (* We use I× to denote this linkage transformer in the derivation. *)

FInductive tm : Set ^:= | tm_pair : tm → tm → tm.

I× .1 = ⊢ I
Ov

2(I Id, W(𝜏1), W(𝜏3)) ∶ (Λ→
.1)𝜎 ↠ 𝜈+(𝜈 •; ⊤ ⊢ S(W(𝜏3)))

FRecursion subst.

I× .2.0 = tm ∶ ℐ 𝑐(𝜏3) ⊢ I
Id ∶ (Λ→

.2)𝜎 ↠ (Λ→
.2)𝜎

Case tm_pair ^:= 𝜆 a rec𝑎 b rec𝑏 x t. tm_pair (rec𝑎 x t) (rec𝑏 x t)

I× .2.1 = tm ∶ ℐ 𝑐(𝜏3) ⊢ I
Ext(I× .2.0, …) ∶ (Λ→

.2)𝜎 ↠ 𝜈+(…; ⊤ ⊢ CaseTy(…, …,ℛ))
End subst.

I× .2 = ⊢ I
Nest(I× .1, …, I× .2.1) ∶ (Λ→

.2)𝜎 ↠ 𝜈+(…; ℐ 𝑐(𝜏3) ⊢ L(RecSig(𝜏3,ℛ)))

I× .3 = ⊢ I
Ov

2(I× .2, {tm ∶ S(W(𝜏3)), rL ∶ L(RecSig(𝜏3,ℛ))}Σ, 𝜆 𝑤.Wrec(𝜏3, rL, 𝑤)) ∶ (Λ→
.3)𝜎 ↠ 𝜈+(…; … ⊢ …)

(* Field test inherited. *)

I× .4 = ⊢ I
Inherit(I× .3) ∶ (Λ→

.4)𝜎 ↠ 𝜈+(…; {tm ∶ ℐ 𝑐(𝜏1), R ∶ tm → ℛ}Σ ⊢ tm)
End Λ→

.

I2 .1 = ⊢ I
Nest(I2 .0, …, I× .4) ∶ (Λ1

.1)𝜎 ↠ 𝜈+(…; ⊤ ⊢ L(…))
(* Family ΛB inherited/mixin-ed. We use IB× to denote this linkage tranformer. *)
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IB×
.1 = ⊢ I

Ov
2(I Id, …,S(W(𝜏4))) ∶ (Λ→..1)𝜎 ↠ 𝜈+(…; ⊤ ⊢ S(W(𝜏4)))

(* FRecursion subst inherited/mixin-ed. *)

IB×
.2 = ⊢ I

Inherit(IB×
.1) ∶ (Λ→..2)𝜎 ↠ 𝜈+(…; … ⊢ L(…))

IB×
.3 = ⊢ I

Ov
2(IB×

.2, …, …) ∶ (Λ→..3)𝜎 ↠ 𝜈+(…; {tm ∶ S(W(𝜏4)), rL ∶ L(RecSig(𝜏4,ℛ))}Σ ⊢ S(𝜆 𝑤.Wrec(𝜏4, rL, 𝑤)))
(* Field test inherited. *)

IB×
.4 = ⊢ I

Inherit(IB×
.3) ∶ (Λ→..4)𝜎 ↠ 𝜈+(…; … ⊢ …)

IB× = ℓ ∶ L+((Λ→
.4)𝜎) ⊢ liftℓ.inh⊕⟩⟩IB .4

(IB×
.4) ∶ 𝒮⊕⟩(ℓ.inh, IB .4) ↠ 𝒮⊕⟩(ℓ.inh ⊕⟩⟩ IB .4, IB×

.4)

I2 .2 = ⊢ I
Nest(I2 .1, , IB×) ∶ (Λ1)𝜎 ↠ 𝜈+(…; ℓ ∶ L+((Λ→

.4)𝜎) ⊢ 𝒮⊕⟩(ℓ.inh ⊕⟩⟩ IB .4, IB×
.4))

End Λ2
.

Λ2 = ⊢ inh(I2 .2, Λ1) ∶ L(…)

Look at the signature of Λ2:

(Λ2)𝜎 = {Λ× ∶ ⊤ ⊢ L((Λ×)𝜎);

ΛB× ∶ {ℓ ∶ L+((Λ→)𝜎)}Σ ⊢ 𝒮⊕⟩(ℓ.inh ⊕⟩⟩ IB .4, IB× .4)
}Sig

(Λ×)𝜎 = {tm ∶ ⊤ ⊢ S(W(𝜏3));
rL ∶ {tm ∶ ℐ 𝑐(𝜏3)}Σ ⊢ RecSig(𝜏3, tm → ℛ)
subst ∶ {tm ∶ S(W(𝜏3)), rL ∶ L(RecSig(𝜏3,ℛ))}Σ ⊢ S(𝜆 𝑤.Wrec(𝜏3, rL, 𝑤))
test ∶ {tm ∶ ℐ 𝑐(𝜏3), R ∶ tm → ℛ}Σ ⊢ tm

}Sig

Now after the sealing and compilation, we can fill in the abstraction of Λ2..ΛB× (e.g. L+((Λ→)𝜎))
with with I× .4, and resulting a linkage Λ2..ΛB× of signature 𝒮⊕⟩(I× .4 ⊕⟩⟩ IB .4, IB× .4). After unfolding the
definition and computation, we can see this linkage equips all the constructors and subst handles
correctly and can be compiled.

Note that, when constructing I2 .2, besides the two expected linkage transformer I× .4 and IB .4, we
also have an extra IB× .4. The two I× .4 and IB .4 linkage transformers are reusing the main computa-
tional information (including the recursion body of subst and the last field). But the extra IB× .4 is
responsible for overriding the inductive signature W(𝜏4) and recursion call entrance Wrec(…, …, …).
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