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During deployment, simply designing defenses against individual ML risks is not sufficient
* R1: Defense against one risk may increase/decrease susceptibility to other unrelated risks
* R2: Conflicts among defenses being combined against multiple risks, degrades effectiveness

Overarching concerns during model deployment = “Meta-Concerns”

R1: Defenses vs. Unrelated Risks!'] R2: Conflicts among ML Defenses/?]
Protect against multiple risks by combining defenses
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Conjectured Causes: Overfitting and Memorization

* Accurate: Correctly identify if combination is effective

» Scalable: Allows combining more than two defenses

Defense = overfitting and memorization = Risks _ _ | |
* Non-invasive: No changes to defenses being combined

Framework: Inﬂuenc'"Q Factors * General: Applicable to different types of defenses
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Model Capacity * Second defense minimizes risk used by first defense
Guideline to Predict Interactions Defi\Con

e Improves accuracy of naive technique

Defenses Risks

* Check position of defenses, and if mechanisms interfere

RD1 (Adversarial Training) R1 (Evasion)
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* (, Tail length of distribution |* |, Curvature Smoothness S

( ) ( ) Siage?
RD2 (Outlier Removal R2 (Poisoning /\

Yes No
""" S2: D, local/no S3: D, uses
CheCk hOW: change? risk?

No Yes Yei/ No
 Defense effectiveness correlates with factor S4: D, mitigates\.
. . . SRIETas risk?

» Change In factor correlates with risk susceptibility o -

* 1. positive correlation; |: negative correlation

e p
= Infer how defense effectiveness correlates with risk Evaluation and Results
_ (1,1) or (l,!) = @ and(1,))or({,1) = @ y Explored combinations (ground truth from prior work)

. Def\Con: 90% (7/8) vs. Naive: 40% (4/8)
Evaluation and Results Unexplored combinations (ground truth from evaluation)
+ |ldentified two unexplored interactions Def\Con: 81% (27/30) vs. Naive: 36% (18/30)

. Predicted interactions using guideline Def\Con is more accurate than naive technique, scalable,

non-invasive, and general

» Validated prediction from guideline empirically
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